
AN ELEMENTARY GUIDE TO THE ADAMS-NOVIKOV EXT

MICHA L ADAMASZEK

The Adams-Novikov spectral sequence for the Brown-Peterson spectrum

Es,t2 = Exts,tBP∗BP (BP∗, BP∗) =⇒ πSs−t(S
0)(p)

has been one of the most successful tools in the understanding of stable homotopy groups of
spheres. However, already the calculation of the algebraic E2-page presents some prohibitive
difficulties and led to the development of computational tools such as the chromatic spectral
sequence of [2].

The purpose of this exposition is to introduce the reader to the Adams-Novikov Ext without
using any of the heavy machinery. In particular, we will calculate the 1-line of the Adams-
Novikov spectral sequence, that is Ext1,∗(BP∗). This was originally the result of Novikov
[3], who also related Ext1 with the image of the J-homomorphism and Miller-Ravenel-Wilson
[2], who used the chromatic spectral sequence to obtain a lot more general results. We will
then move on to other examples, including the image of Ext1 in the classical Adams spectral
sequence and a short detour of the higher Greek letter elements.

1. Hopf algebroids and BP∗

We assume the reader is familiar with the general theory of Hopf algebroids and their
homological algebra and with the construction of the Adams-Novikov spectral sequence. The
reference for these is [5, A1.1, A1.2, 2.2]. We will briefly recall the relevant algebraic notions.

A Hopf algebroid over a ground ring K is a pair (A,Γ) of commutative K-algebras equipped
with the left and right units ηL, ηR : A → Γ, counit Γ → A, conjugation Γ → Γ and a
coproduct

∆ : Γ→ Γ⊗A Γ
all of which are K-algebra homomorphisms satisfying a number of compatibility axioms. In
the definition of ∆ we treat Γ as a left A-module via ηL and as a right A-module via ηR. An
example of a Hopf algebroid is any Hopf algebra, in particular (Fp,A∗p) where A∗p denotes the
dual mod p Steenrod algebra.

A left Γ-comodule is a left A-module M equipped with a map M → Γ⊗AM , which again
satisfies the usual compatibility axioms. Right comodules are defined analogously. Note that
A itself is a left Γ-comodule via the map a 7→ 1 ⊗ a, which can be identified with the right
unit ηR : A→ Γ = Γ⊗A A. Similarly, A is a right Γ-comodule via the map a 7→ a⊗ 1 which
can be identified with ηL.

For a right Γ-comodule M and a left Γ-comodule N we define the cotensor product M�N
as

M�N = ker(ψM ⊗ idN − idM ⊗ ψN : M ⊗A N →M ⊗A Γ⊗A N).
In particular, if M = A with its right module structure then A�N is the submodule of
primitive elements of N (i.e. n ∈ N such that ψN (n) = 1 ⊗ n). For every M the functor
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CotoriΓ(M,N) is the i-th right derived functor of N 7→M�ΓN . When M = A we abbreviate
notation to Cotori(N). In due course this will always be denoted by Exti(N), due to the
isomorphism between HomΓ(A,−) and A�Γ−, as explained in [5, p.310].

For the calculation of Ext(N) it is customary to treat the left Γ-comodule N as a right
Γ-comodule via a device which employs the conjugation map of the algebroid. The standard
left and right Γ-comodule structures on A correspond to each other under this operation. Now
it follows (see [5, A1.2.12]) that Exti(N) is the i-th cohomology group of the cobar complex
{Cs(N)}s≥0, where Cs(N) = N ⊗A Γ⊗As:

(1) N
d // N ⊗A Γ d // N ⊗A Γ⊗A Γ // · · ·

We write a typical element of Cs(N) as nγ1| · · · |γs and we skip n if n = 1. The differential is
given by the formula

d(nγ1| · · · |γs) = ψN (n)γ1| · · · |γs +
s∑
i=1

(−1)inγ1| · · · |∆(γi)| · · · |γs + (−1)s+1nγ1| · · · |γs|1

where ψN is the right Γ-comodule map for N . It is convenient to note that the differentials
are determined by

(2) d(n) = ψN (n)− n, d(γ) = 1|γ + γ|1−∆(γ)

and extended to other elements of the cobar complex by requiring that d be a graded derivation
with respect to the tensor product grading as follows:

d(nγ1| · · · |γs) = d(n)γ1| · · · |γs +
s∑
i=1

(−1)i−1nγ1| · · · |d(γi)| · · · |γs.

When N = A then the complex (1) for computing Ext(A) can be identified with

(3) A
d // Γ d // Γ⊗A Γ // · · ·

with d(a) = ηR(a)− a and d(γ) = 1|γ + γ|1−∆(γ).
Eventually, if N is a comodule algebra (like A), then Ext(N) is equipped with a product

[5, A.1.2.15]. In case when N = A this product is represented in the cobar construction by
concatenation

(4) γ1| · · · |γs × γ′1| · · · |γ′r = γ1| · · · |γs|γ′1| · · · |γ′r.

Next we shall review the structure of the Hopf algebroid (BP∗, BP∗BP ) associated with the
Brown-Peterson spectrum BP for a fixed prime p. These formulae and Quillen’s construction
of the spectrum BP can be found in [5, Ch.4] and the relation with formal group laws is
described in [5, Appendix A2]. A good introduction to the subject is [6].

We have the isomorphisms of graded rings

BP∗ = Z(p)[v1, v2, . . .], |vi| = 2(pi − 1),

BP∗BP = BP∗[t1, t2, . . .], |ti| = 2(pi − 1).

The structural maps of the Hopf algebroid are given in terms of the rationalization BP∗⊗Q =
Q[l1, l2, . . .] where |li| = 2(pi− 1). In terms of the formal group laws the li are the coefficients
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of the logarithm for the universal p-typical formal group law. The generators of BP∗ and
BP∗ ⊗Q are related by Hazewinkel relations:

(5) pln =
∑

0≤i<n
liv

pi

n−i, l0 = v0 = 1.

The left unit is just the inclusion ηL : BP∗ → BP∗BP and the right unit is given on the
generators of BP∗ ⊗Q by

(6) ηR(ln) =
∑

0≤i≤n
lit
pi

n−i

and the diagonal of BP∗BP is determined by:

(7)
∑
i,j

li∆(tj)p
i

=
∑
i,j,k

lit
pi
j ⊗ t

pj+k

k .

These equations determine the Hopf algebroid structure uniquely.
Consider the invariant ideals In = (p, v1 . . . , vn−1) ⊂ BP∗ and I = (p, v1, v2, . . .) ⊂ BP∗.

The following relations, which hold in (BP∗, BP∗BP ), can be easily derived from (5)-(7), see
eg. [4, B.5.15] or [5] for a proof.

ηR(v1) = v1 + pt1(8)
ηR(vn) ≡ vn (mod In)(9)

ηR(vn+j) ≡ vn+j + vnt
pn

j − v
pj

n tj (mod In, t1, . . . , tj−1), j ≥ 1(10)

∆(t1) = 1|t1 + t1|1(11)
∆(t2) = 1|t2 + t2|1− v1t1|t1 + t1|t21 for p = 2(12)
ηR(v2) = v2 − 5v1t

2
1 − 3v2

1t1 + 2t2 − 4t31 for p = 2(13)

We conclude by making a notational convention: in the sequel, unless indicated otherwise,
the pair (A,Γ) always denotes (BP∗, BP∗BP ).

2. Calculating Ext1(A)

This calculation follows precisely the strategy outlined in [6]. First, since In ⊂ A are
invariant ideals, we can consider the Γ-comodules A/In for n ≥ 0. We start by computing
Ext0 for these comodules.

Lemma 2.1 (Landweber, [1]).

Ext0(A) = Z(p), Ext0(A/In) = Fp[vn]

Proof. By definition, Ext0(A/In) is the kernel of (ηR − id) : A/In → Γ/In, so it contains all
powers of vn by (9). Now suppose x is an element in A/In such that ηR(x)−x ≡ 0 (mod In).
Let vn+j be the highest of the v which appear in x and write x as

x = vln+jfl + . . .+ vn+jf1 + f0,

where each fi is a polynomial in vn, . . . , vn+j−1. Let Jn,j be the ideal (p, v1, . . . , vn−1, t1, . . . , tj−1) ⊂
Γ. By (10) we have the following relations modulo Jn,j :

ηR(vn+j) ≡ vn+j + vnt
pn

j − v
pj

n tj (mod Jn,j),

ηR(vk) ≡ vk (mod Jn,j) for k = n, . . . , n+ j − 1.
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The second one implies that ηR(fi) ≡ fi (mod Jn,j), so modulo this ideal we have a congruence

0 ≡ ηR(x)− x ≡
l∑

i=0

((vn+j + vnt
pn

j − v
pj

n tj)
ifi − vin+jfi) (mod Jn,j),

but the sum equals vlnt
lpn

j fl + (lower powers of tj), so it follows that fl ≡ 0 (mod In). A
repeated application of this argument proves that x is a monomial in vn. �

We can now describe the generators of Ext1(A). First of all, since Exti(A ⊗ Q) = 0 for
i > 0 (for a proof see [5, Thm. 5.2.1]), and since (A,Γ) is Z(p)-local, all Exti(A) are p-torsion
groups for all i > 0. The short exact sequence of Γ-comodules

0 // A
·p // A // A/(p) // 0

yields a long sequence of Ext groups
(14)

0 // Ext0(A)
·p // Ext0(A) // Ext0(A/(p)) δ // Ext1(A)

·p // Ext1(A) // · · · .

By Lemma 2.1 for n = 1 it becomes

(15) 0 // Z(p)
·p // Z(p)

// Fp[v1] δ // Ext1(A)
·p // Ext1(A) // · · · .

We define elements αt ∈ Ext1,2t(p−1)(A) by αt = δ(vt1). By exactness of (15) the elements αt
are nonzero, have order p and each group Ext1,2t(p−1)(A) is a cyclic p-group, while all other
groups in Ext1,∗(A) are trivial. It remains to determine the orders of the groups, i.e. the
divisibility of αt by p.

We can perform this calculation in the cobar construction and write explicit representatives
for αt. We have the diagram in which each column is the cobar resolution for the respective
comodule:

(16) 0 // A
·p //

ηR−id

��

A //

��

A/(p) //

��

0

0 // Γ
·p //

��

Γ //

��

Γ/(p) //

��

0

· · · · · · · · ·

Applying the definition of the connecting homomorphism δ and (8) we obtain

(17) αt = δ(vt1) =
1
p

(ηR(vt1)− vt1) =
1
p

((v1 + pt1)t − vt1)

From now on we fix a factorization t = spi where s is not divisible by p.
If p is odd then we have

αt = spivsp
i−1

1 t1 + (terms divisible by pi+1)

and when p = 2 we have

αt = s2ivs2
i−1

1 t1 + s2i(s2i − 1)vs2
i−2

1 t21 + (terms divisible by 2i+1).
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In either case αt is certainly divisible by pi and we define αt/j = αt/p
j−1 for j = 1, . . . , i+ 1,

so that αt/j is an element of order pj in Ext1(A).
If p is odd then

αt/i+1 = svsp
i−1

1 t1 + (terms divisible by p).
It follows from the portion of the long exact sequence

Ext1(A)
·p // Ext1(A) // Ext1(A/(p))

that an element of Ext1(A) is divisible by p if and only if its image in Ext1(A/(p)) is zero.
The image of αt/i+1 in Ext1(A/(p)) is represented by svsp

i−1
1 t1 and it is nonzero by Lemma

2.3.i. Therefore αt/i+1 is the generator of Ext1,2(p−1)spi
(A) ' Z/(pi+1).

If p = 2 the situation is more complicated.
• If t is odd (i.e. i = 0) we have

αt/1 = vs−1
1 t1 + (terms divisible by 2).

As before, the mod 2 reduction of this element is vs−1
1 t1 which is nonzero in Ext1(A/(2))

by Lemma 2.3.i, hence Ext1,2s(A) ' Z/(2).
• If t = 2 (i.e. s = 1, i = 1 and we are in Ext1,4(A)) then we have exactly

α2/2 = v1t1 + t21.

Note that in dimension 4 the image d(A/(2)) ⊂ Γ/(2) is spanned by ηR(v2
1) − v2

1 =
4(v1t1 + t21) ≡ 0, so α2/2 necessarily gives a nonzero element in Ext1(A/(2)). It means
that Ext1,4(A) ' Z/(4).
• If t ≥ 4 is even (i.e. i ≥ 1) then

αt/i+1 = vt−1
1 t1 + vt−2

1 t21 + (terms divisible by 2)

The image of αt/i+1 in Ext1(A/(2)) is vt−1
1 t1+vt−2

1 t21, but this time it is trivial. Indeed,
using (9), (10) we have

ηR(v1) ≡ v1 (mod 2), ηR(v2) ≡ v2 + v1t
2
1 + v2

1t1 (mod 2),

and we easily see that

αt/i+1 ≡ ηR(v2v
t−3
1 )− v2v

t−3
1 = d(v2v

t−3
1 ) (mod 2).

It means that the element αt/i+1 + (ηR(v2v
t−3
1 )− v2v

t−3
1 ) in divisible by 2 in Γ, so we

can define

αt/i+2 =
1
2
(
αt/i+1 + (ηR(v2v

t−3
1 )− v2v

t−3
1 )

)
=

1
2i+1 ((v1 + 2t1)t − vt1) + (ηR(v2v

t−3
1 )− v2v

t−3
1 )

2
.(18)

In order to prove that this element is not further divisible by 2 we compute its image
in Ext1(A/(2)), which is equivalent to computing the numerator of (18) mod 4. We
don’t need an exact formula; it suffices to recall from (13) that

ηR(v2) ≡ v2 − 5v1t
2
1 − 3v2

1t1 + 2t2 (mod 4)

and it quickly follows that the image of αt/i+2 in Ext1(A/(2)) has the form

αt/i+2 ≡ t2vt−3
1 + (terms divisible by t1) (mod 2)
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and a cocycle of this form is nonzero in Ext1(A/(2)) by Lemma 2.3.ii.
All of this can be summarized in the following theorem [5, 5.2.6].

Theorem 2.2. Let t = spi. The generator of Ext1,2(p−1)t(A) is

αt/i+1 =
1

pi+1
(ηR(vt1)− vt1) =

1
pi+1

((v1 + pt1)t − vt1)

unless p = 2 and t 6= 4 is even, when the generator of Ext1,2t(A) is αt/i+2 given by (18). It
follows that

Ext1,2(p−1)t(A) = Z/(pi+1)
unless p = 2 and t 6= 4 is even, when

Ext1,2t(A) = Z/(2i+2).

It remains to prove the following lemma, which identifies some nonzero elements in Ext1(A/(p)).
The proof is similar to that of Lemma 2.1.

Lemma 2.3. For any prime p:
i) The cocycle vk1 t1 ∈ Γ/(p) represents a nonzero element in Ext1(A/(p)).
ii) If α ∈ Γ/(p) is a cocycle such that

α ≡ t2vk1 (mod (p, t1))

then α represents a nonzero element in Ext1(A/(p)).

Proof. We first prove (i). Suppose that x ∈ A/(p) is an element such that

ηR(x)− x = vk1 t1 in Γ/(p).

Then, in particular
ηR(x)− x ≡ 0 (mod (p, t1)).

Now we use an argument identical to that of Lemma 2.1. Let v1+j be the highest v occurring
in x and note, after (10):

ηR(v1+j) = v1+j + v1t
p
j − v

pj

1 tj (mod (p, t1, . . . , tj−1))

ηR(vk) = vk (mod (p, t1, . . . , tj−1)) for k ≤ j.
If j ≥ 2 we argue as in Lemma 2.1 that the coefficient at the highest power of v1+j in x must
be 0. Therefore x is a polynomial in v1, v2 only. Write x as

x = vl2fl + . . .+ v2f1 + f0

where each fi is a multiple of an appropriate power of v1. Computing modulo p we now have

vk1 t1 ≡ ηR(x)− x ≡
l∑

i=0

((v2 + v1t
p
1 − v

p
1t1)ifi − vi2fi)

which is vl1t
lp
1 fl + (lower powers of t1), so we must have fl ≡ 0 (mod p) for l ≥ 1. An

inductive repetition proves that x = f0 but then ηR(x)−x ≡ 0 (mod p). This means we have
a contradiction.

Now we move to (ii). The argument is similar, but one step longer. Suppose ηR(x)−x = α
in Γ/(p). Then ηR(x) − x ≡ 0 (mod (p, t1, t2)) and the same method proves that x is a
polynomial in v1, v2, v3. The presence of v3 is eliminated by computing modulo (p, t1) and
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eliminating excessive powers of t2 which originate from ηR(v3) ≡ v3+v1t
p
2−v

p2

1 t2 (mod (p, t1)).
It remains to consider the case when x is a polynomial in v1, v2. Note that

ηR(v1) ≡ v1 (mod (p, t1)), ηR(v2) ≡ v2 (mod (p, t1)),

hence ηR(x)−x ≡ 0 (mod (p, t1)) for any such element x, which contradicts ηR(x)−x ≡ t2vk1
(mod (p, t1)). �

3. Hopf invariant one

In this, and the following sections, we perform some simple explicit calculations with the
elements we have just defined. We begin with the relation between the Adams-Novikov
spectral sequence for BP and the classical Adams mod p spectral sequence for H/(p).

The Brown-Peterson spectrum BP comes with a map Θ : BP → H/(p) to the mod p
Eilenberg-MacLane spectrum H/(p), which induces a map from the Adams-Novikov spectral
sequence to the classical Adams spectral sequence

Es,t2 = ExtA∗p(Fp,Fp) =⇒ πSs−t(S
0)(p).

where A∗p denotes the mod p dual Steenrod algebra. For our purposes it will suffice to describe
the map of Hopf algebroids

(A,Γ)→ (Fp,A∗p)
induced by Θ. Let us remind the structure of A∗p as a Hopf algebra. When p = 2 we have

A∗2 = F2[ξ1, ξ2, . . .], |ξi| = 2i − 1

and for odd p:

A∗p = Fp[ξ1, ξ2, . . .]⊗ Λ[τ0, τ1, . . .], |ξi| = 2(pi − 1), |τi| = 2pi − 1.

In each case the diagonal is given on the polynomial part by

(19) ∆(ξk) =
∑

0≤i≤k
ξp

i

k−i|ξi,

which, in the case p = 2 implies also

(20) ∆(ξ2
k) =

∑
0≤i≤k

(ξ2
k−i)

pi |ξ2
i ,

It follows from the defining relations (5)-(7) that the diagonal of (A,Γ) satisfies

(21) ∆(tk) ≡
∑

0≤i≤k
ti|tp

i

k−i (mod I)

(see eg. [4, B.5.15]). For odd p (19) and (21) imply that the assignment vi 7→ 0, ti 7→ ξi
extends to a map of Hopf algebroids from (A,Γ) to the opposite Hopf algebra (Fp,A∗p), or, in
other words, the assignment

vi 7→ 0, ti 7→ c(ξi)
where c is the conjugation of A∗p, extends to a map of Hopf algebroids (A,Γ)→ (Fp,A∗p). In
a similar fashion, (20) and (21) imply that for p = 2 the assignment

vi 7→ 0, ti 7→ c(ξ2
i )

extends to a map of Hopf algebroids (A,Γ)→ (F2,A∗2). In each case this is the map induced
by the map of spectra BP → H/(p).



8 MICHA L ADAMASZEK

It follows that computing the image of the map

(22) ExtΓ(A,A)→ ExtA∗p(Fp,Fp)

is equivalent to computing the reduction mod I in ExtΓ(A,A) and substituting ti 7→ c(ξi) for
odd p or ti 7→ c(ξ2

i ) for p = 2. Note, in particular, that the Adams 1-line Ext1,∗
A∗p(Fp,Fp) is

generated by the elements hi = [ξp
i

1 ] (and an additional a0 = [τ0] for odd p). Moreover, we
have c(ξ1) = −ξ1 and c(ξ2

1) = ξ2
1 in A∗p.

We will show that for p = 2 the only elements in Ext1,∗ with nonzero image in the Adams
spectral sequence are α1 ∈ Ext1,2, α2/2 ∈ Ext1,4 and α4/4 ∈ Ext1,8 with images h1, h2, h3. It
is the content of [5, Thm.5.2.8]. This follows from a direct reduction mod I (which we denote
≡I) using the formulas of Theorem 2.2.

α1 =t1 7→ ξ2
1 = h1,

α2/2 =
1
4

((v1 + 2t1)2 − v2
1) ≡I t21 7→ ξ4

1 = h2

α4/4 =
1
2

(
1
8

((v1 + 2t1)4 − v4
1)− (ηR(v2v1)− v2v1)) ≡I t41 7→ ξ8

1 = h3.

All the remaining generators of Ext1(A) are mapped to zero. Indeed, we only need to check
this for α2i/i+2 where i ≥ 3. In that case α2i/i+2 is given by (18) with t = 2i. By (13) we
have ηR(v2) ≡ 2t2 (mod 4, v1, v2, . . .), hence

α2i/i+2 ≡I 22i−i−2t1 + 22i−3t2t1 ≡I 0.

If p is odd and t = spi > 1 the image of the generator αt/i+1 ∈ Ext1,2(p−1)spi
in the mod p

Adams spectral sequence is zero, because

αt/i+1 =
1

pi+1
((v1 + pt1)t − vt1) ≡I psp

i−i−1tsp
i

1 ≡I 0.

When t = 1 the image of α1 is

α1 =
1
p

((v1 + pt1)− v1) ≡I t1 7→ ξ1 = h0.

4. The β-family in Ext2

The elements βt in Ext2 are defined as images of vt2 under the composition

(23) Fp[v2] = Ext0(A/(p, v1)) δ1 // Ext1(A/(p)) δ0 // Ext2(A)

where δn is the connecting homomorphism corresponding to the short exact sequence of
comodules

(24) 0 // A/In
·vn // A/In // A/In+1

// 0 .

In particular, at the level of cobar constructions, we have

δ1(vt2) =
1
v1

(ηR(vt2)− vt2) ∈ Γ/(p).
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We also denote this element by βt ∈ Ext1(A/(p)) and we let βt/i ∈ Ext1(A/(p)) to be defined
by the condition βt/i · vi−1

1 = βt, whenever it exists. Recalling from (10) that ηR(v2) ≡
v2 + v1t

p
1 − v

p
1t1 (mod p), we obtain the formula for a representative in Γ/(p):

βt = δ1(vt2) =
1
v1

((v2 + v1t
p
1 − v

p
1t1)t − vt2)

which is particularly useful when t = pi. We then pass to Ext2(A) defining elements βt/i ∈
Ext2(A) as images of βt/i ∈ Ext1(A/(2)) under δ0 and then βt/i,j ∈ Ext2(A) by the condition
βt/i,j · pj−1 = βt/i. In short:

(25) βt/i,j =
1

pj−1
δ0(

1
vi−1

1

δ1(vt2))

whenever the right-hand side makes sense. As usually we also abbreviate βt/i = βt/i,1.
We will now find the representatives for some of the elements of the β-family (namely β2j/2j ,

β2j/2j−1 and β4/2,2), together with their images in the Adams spectral sequence. This will
prove part of [5, Thm.5.4.6]. In particular, with β4/2,2 we will experience similar divisibility
issues we had in the 1-line. Before we start, let us make the following observation which will
simplify some of the calculations.

Lemma 4.1. If j ≥ 1 and a ≥ pj−1, the cocycles va1t
pj

1 and va+pj−1
1 t1 represent the same

element of Ext1(A/(p)).

Proof. Suppose n ≥ 0 and m is a power of p. Using

ηR(v1) ≡ v1 (mod p), ηR(v2) ≡ v2 + v1t
p
1 − v

p
1t1 (mod p),

we obtain

ηR(vn1 v
m
2 )− vn1 vm2 ≡ vn1 (v2 + v1t

p
1 − v

p
1t1)m − vn1 vm2

≡ vn+m
1 tpm1 − vn+pm

1 tm1 (mod p)

which means that vn+m
1 tpm1 and vn+pm

1 tm1 represent the same element of Ext1(A/(p)). The
result follows by repeated application of this fact. �

We proceed with the description of a few selected elements of the β-family.

• β2j/2j for p = 2. The image of δ1(v2j

2 ) is represented in Γ/(2) by

β2j ≡
1
v1

((v2 + v1t
2
1 + v2

1t1)2j − v2j

2 ) ≡ v2j−1
1 t2

j+1

1 + v2j+1−1
1 t2

j

1 .

From this we get an element β2j/2j ∈ Ext1(A/(2)) represented in Γ/(2) by

β2j/2j =
1

v2j−1
1

β2j = t2
j+1

1 + v2j

1 t
2j

1 .

By Lemma 4.1, the same cohomology class in Ext1(A/(2)) is represented by

β2j/2j = t2
j+1

1 + v2j+1−1
1 t1.
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It follows that the element β2j/2j ∈ Ext2(A) is represented by

β2j/2j = δ0(t2
j+1

1 + v2j+1−1
1 t1)

=
1
2
(
d(t2

j+1

1 ) + d(v2j+1−1
1 )|t1 + v2j+1−1

1 d(t1)
)
.

From (11) we have d(t1) = 0 and d(tk1) = 1|tk1 + tk1|1− (1|t1 + t1|1)k, so

β2j/2j =
1
2

( ∑
0<i<2j+1

(
2j+1

i

)
ti1|t2

j+1−i
1 + ((v1 + 2t1)2j+1−1 − v2j+1−1

1 )|t1
)
.

The only binomial coefficient in the 2j+1-th row of the Pascal triangle which is divisible
only by 2 but not by 4 is the middle one. It follows that

β2j/2j = t2
j

1 |t2
j

1 + v2j+1−2
1 t1|t1 + (terms divisible by 2).

It means that β2j/2j ≡I t2
j

1 |t2
j

1 , and this element maps to ξ2j+1

1 |ξ2j+1

1 = h2
j+1 in the

Adams spectral sequence.
• βpj/pj for odd p. For comparison, we see that an analogous calculation shows that
βpj/pj ∈ Ext1(A/(p)) is represented by

βpj/pj = tp
j+1

1 + vp
j+1−1

1 t1.

It follows from our calculation of Ext1(A) that vp
j+1−1

1 t1 is the mod p reduction of
αpj+1/j+2 ∈ Ext1(A). The portion of the long exact sequence (14)

Ext1(A) // Ext1(A/(p)) δ0 // Ext2(A)

now implies that δ0(vp
j+1−1

1 t1) = 0, so in Ext2(A) we have

βpj/pj = δ0(tp
j+1

1 ) =
1
p

( ∑
0<i<pj+1

(
pj+1

i

)
ti1|t

pj+1−i
1

)
.

• β2j/2j−1 for p = 2. Following the previous calculation we get in Ext1(A/(2))

β2j/2j−1 =
1

v2j−2
1

β′2j = v1t
2j+1

1 + v2j−1
1 t2

j

1 .

By Lemma 4.1 this element is also represented by v1t
2j+1

1 + v2j+1

1 t1, hence in Ext2(A)
we have

β2j/2j−1 =
1
2
d(v1t

2j+1

1 + v2j+1

1 t1)

=
1
2
(
d(v1)|t2j+1

1 + v1|d(t2
j+1

1 ) + d(v2j+1

1 )|t1
)

=
1
2

(
2t1|t2

j+1

1 + v1|d(t2
j+1

) + ((v1 + 2t1)2j+1 − v2j+1

1 )|t1
)

≡I t1|t2
j+1

1

which maps to ξ2
1 |ξ2j+2

1 = h1hj+2 in the Adams spectral sequence.
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• β4/2,2 for p = 2. First, we find β4 ∈ Ext1(A/(2)):

β4 = δ1(v4
2) =

1
v1

(
(v2 + v1t

2
1 − v2

1t1)4 − v4
2

)
≡ v3

1t
8
1 + v7

1t
4
1 (mod 2)

so we can consider the element

β4/2 =
1
v1
β4 = v2

1t
8
1 + v6

1t
4
1.

Its image in Ext2(A) is

β4/2 =
1
2

(d(v2
1)|t81 + v2

1d(t81) + d(v6
1)|t41 + v6

1d(t41))

=
1
2

(
(4v1t1 + 4t21)|t81 + v2

1

∑
0<i<8

(
8
i

)
ti1|t8−i1 +

+ ((v1 + 2t1)6 − v6
1)|t41 + v6

1

∑
0<i<4

(
4
i

)
ti1|t4−i1

)
= v2

1t
4
1|t41 + v6

1t
2
1|t21 + (terms divisible by 2)

In order to see that β4/2,2 exists, we must know that β4/2 is divisible by 2 or, equiv-
alently, its reduction to Ext2(A/(2)) is zero. This time it is not so easy to guess the
expression as a coboundary, but it turns out that

(26) v2
1t

4
1|t41 + v6

1t
2
1|t21 ≡ d(v2

2t
4
1 + v4

1t
2
2) (mod 2).

The proof is straightforward using the mod 2 reductions of (8)-(13):

d(v2
2) ≡ v2

1t
4
1 + v4

1t
2
1, d(t41) ≡ 0,

d(v4
1) ≡ 0, d(t22) ≡ v2

1t
2
1|t21 + t21|t41.

Therefore we can define

β4/2,2 =
1
2

(β4/2 + d(v2
2t

4
1 + v4

1t
2
2))

and after a rather tedious, but straightforward calculation we get

β4/2,2 ≡ t21|t81 + v2
2t

2
1|t21 (mod 2, v1)

so β4,2/2 ≡I t21|t81 and its image in the Adams spectral sequence is ξ4
1 |ξ16

1 = h2h4.

5. An example in higher Ext groups

As a final example we prove [5, Prop.5.1.21]. First, recall that as a generalization of the
α- and β-families, we define the n-th Greek letter element α(n)

t as the image of vtn under the
composition of connecting homomorphisms of (24)

(27) Fp[vn] = Ext0(A/In) δn−1
// Ext1(A/In−1) δn−2

// · · · δ0 // Extn(A)

so that, for example, αt = α
(1)
t , βt = α

(2)
t , etc. The proposition we want to prove is

(28) α
(n+1)
1 = −α(n)

p−1α1 for n ≥ 2.

(It is equivalent with the formulation of [5, Prop.5.1.21] using graded commutativity of prod-
uct in Ext.)
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First, observe that every connecting homomorphism δk : Ext∗(A/Ik+1)→ Ext∗+1(A/Ik) of
(27) satisfies

δk(x|t1) = δk(x)|t1
which follows from

δk(x|t1) =
1
vk
d(x|t1) =

1
vk

(d(x)|t1 ± x|d(t1)) = (
1
vk
d(x))|t1 = δk(x)|t1

because d(t1) = 0.
Now we can calculate the element α(n+1)

1 . We start with vn+1 ∈ Fp[vn+1] = Ext0(A/In+1)
and its image in Ext1(A/In):

δn(vn+1) =
1
vn

(ηR(vn+1)− vn+1)

≡ 1
vn

(vnt
pn

1 − v
p
nt1) = tp

n

1 − v
p−1
n t1 (mod In)

The image of this element in Ext2(A/In−1) is in turn given by

δn−1δn(vn+1) =
1

vn−1

(
d(tp

n

1 )− d(vp−1
n )|t1 − vp−1

n |d(t1)
)

= −d(vp−1
n )

vn−1
|t1 = −δn−1(vp−1

n )|t1

because d(tp
n

1 ) =
∑

0<i<pn

(
pn

i

)
ti1|t

pn−i
1 ≡ 0 (mod p) and (p) ⊂ In−1. We now apply all the

remaining connecting homomorphisms δ to obtain

δ0δ1 · · · δn−1δn(vn+1) = −δ0 · · · δn−2
(
δn−1(vp−1

n

)
|t1)

= −δ0 · · · δn−2δn−1(vp−1
n )|t1

which is exactly the cochain level version of (28).
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