Graph coloring Exercise class problems - volume 2

1. Prove that a graph with chromatic number k has at least $\binom{k}{2}$ edges.
2. Prove $\chi(G) \leq|V(G)|-\alpha(G)+1$.
3. Suppose we have n straight lines in the plane, no three intersecting at the same point. Let G be the graph whose vertices are the intersection points of the lines, and two of them are adjacent if they appear consecutively on one of the lines. Prove that G is 3 -colorable.
4. Suppose G is 4-colorable. Prove that G can be written as a union of two bipartite graphs (that means there are subgraphs H_{1}, H_{2} of G such that $V(G)=V\left(H_{1}\right) \cup V\left(H_{2}\right), E(G)=E\left(H_{1}\right) \cup E\left(H_{2}\right)$ and H_{1}, H_{2} are bipartite).
5. Prove that if \bar{G} is bipartite then $\chi(G)=\omega(G)$.
6. Prove that if an n-vertex graph G is k-colorable then G has at most $\frac{k-1}{2 k} n^{2}$ edges.
7. Show that every graph has a vertex ordering for which the greedy algorithm uses exactly $\chi(G)$ colors.
8. Write a function that takes a graph and an ordering of its vertices and produces a greedy vertex coloring for that ordering.
9. Write a function that does this for a 100 random orderings of the vertices and picks the most efficient coloring.
