## Graph coloring Exercise class problems - volume 4

1. What is $\min \left\{P_{G}(4): G\right.$ is planar $\}$ ?
2. Find the chromatic polynomial of

- The $2 \times n$ grid $K_{2} \square P_{n}$.
- The wheel $W_{n}$
- $K_{n}-e$, the complete graph with one edge removed.
- $P_{n}\left[K_{m}\right]$ (graph substitution, see Homework 1).

3. Let $P_{G}^{\prime}(t)$ denote the number of colorings of $G$ with exactly $t$ colors $1, \ldots, t$ appearing, i.e. such that the color assignment $c: V(G) \rightarrow\{1, \ldots, t\}$ is surjective. Show that $P_{G}^{\prime}(t)$ is not a polynomial for any graph $G$.
4. If $G$ is a graph with chromatic polynomial $P(t)$, construct a graph with chromatic polynomial

- $t P(t-1)$,
- $(t-1) P(t)$,
- $P(t)^{3}$,
- $P(t)^{2} / t$.

5. Let $G$ be a graph with $n$ vertices, $m$ edges and $r$ triangles. Show that $\left[t^{n-2}\right] P_{G}(t)=\binom{m}{2}-r$.
6. Let $G$ be a graph with $n$ vertices, $m$ edges and chromatic polynomial $P_{G}(t)=\sum_{i=0}^{n} a_{i} t^{n-i}$. Prove that $\left|a_{i}\right| \leq\binom{ m}{i}$.
