Graph coloring Exercise class problems - volume 5

Chromatic polynomials ctd.

1. $P_{G}(t)=(t-1)^{n}+(-1)^{n}(t-1)$ implies that G is the n-cycle C_{n}.

Edge-chromatic numbers.

1. If G is connected and $L(G)$ is isomorphic to G then G is a cycle.
2. Suppose that G has n vertices and m edges. Show that $\chi^{\prime}(G) \geq m /\lfloor n / 2\rfloor$. Use it to show that the 5 -vertex graph from the lecture has no 3-edge-coloring. Reprove that $\chi^{\prime}\left(K_{2 k-1}\right)=2 k-1$.
3. We observed that $\omega(L(G)) \geq \Delta(G)$. Find an exact formula for $\omega(L(G))$.
4. Suppose G is r-regular with an odd number of vertices. Prove that r is even and that $\chi^{\prime}(G)=r+1$.
5. Find the edge-chromatic number of the Petersen graph.
