Graph coloring

Graded homework 3

Problem 1. (2pt) Find the edge-chromatic number χ^{\prime} of FunnyGraph(99) from Homework 1.

Problem 2. $\left(2 \frac{2}{3} \mathrm{pt}\right)$ In the lectures we defined a family of graphs $Q_{d}(u, s)$, and we used the fact that they are unit distance graphs in \mathbb{R}^{d}.
a) Show that each $Q_{d}(u, s)$ is in fact a unit distance graph in \mathbb{R}^{d-1}.
b) Use the graphs $Q_{10}(u, s)$ to prove $\chi\left(\mathbb{R}^{9}\right) \geq C$ for a constant C as large as you can.

Problem 3. (2.(6)pt) The supremum metric (or ℓ_{∞} metric) in $\mathbb{R}^{d}, d \geq 1$ is given by

$$
d_{\infty}\left(\left(x_{1}, \ldots, x_{d}\right),\left(y_{1}, \ldots, y_{d}\right)\right)=\max \left\{\left|x_{1}-y_{1}\right|, \ldots,\left|x_{d}-y_{d}\right|\right\}
$$

Find the smallest number of colors required to color \mathbb{R}^{d} so that any two points whose distance in the supremum metric equals 1 have different colors.

Problem 4. $\left(\frac{8}{3} \mathrm{pt}\right)$ Let $P_{2 \times n}=P_{2} \square P_{n}$ be the $2 \times n$ grid graph.

Find the number of edge-colorings of $P_{2 \times n}$ with 3 colors. ($P_{2 \times n}$ is called graphs.Grid2dGraph $(2, n)$ in Sage).

Problem 5. (0pt) Which topics/theorems/methods from these lectures/exercises did you find most useful/useless/interesting/boring/easy/hard/... ?

Deadline: Friday exam week, 15/04/2016, 23:59.

