**Problem 1.** (2pt) Find the edge-chromatic number  $\chi'$  of FunnyGraph(99) from Homework 1.

**Problem 2.**  $(2\frac{2}{3}\text{pt})$  In the lectures we defined a family of graphs  $Q_d(u, s)$ , and we used the fact that they are unit distance graphs in  $\mathbb{R}^d$ .

- a) Show that each  $Q_d(u, s)$  is in fact a unit distance graph in  $\mathbb{R}^{d-1}$ .
- b) Use the graphs  $Q_{10}(u, s)$  to prove  $\chi(\mathbb{R}^9) \ge C$  for a constant C as large as you can.

**Problem 3.** (2.(6)pt) The supremum metric (or  $\ell_{\infty}$  metric) in  $\mathbb{R}^d$ ,  $d \geq 1$  is given by

$$d_{\infty}((x_1, \dots, x_d), (y_1, \dots, y_d)) = \max\{|x_1 - y_1|, \dots, |x_d - y_d|\}.$$

Find the smallest number of colors required to color  $\mathbb{R}^d$  so that any two points whose distance in the supremum metric equals 1 have different colors.

**Problem 4.**  $(\frac{8}{3}\text{pt})$  Let  $P_{2\times n} = P_2 \Box P_n$  be the  $2 \times n$  grid graph.



Find the number of edge-colorings of  $P_{2\times n}$  with 3 colors. ( $P_{2\times n}$  is called graphs.Grid2dGraph(2,n) in Sage).

**Problem 5.** (0pt) Which topics/theorems/methods from these lectures/exercises did you find most useful/useless/interesting/boring/easy/hard/... ?

Deadline: Friday exam week, 15/04/2016, 23:59.