Graph coloring

Lecture notes, vol. 1A, Intro to Graph Theory

Formalities about the course:

- There will be 3 homework assignments. Each assignment can earn you 10 points. All in all, 30 points.
- You have the possibility to earn 3 points by volunteering to take one day of lecture notes and setting them up in LaTeX, for everyone to use. Please volunteer.
- You will have the possibility to present an open problem, related to Graph Coloring. This will be done in the exercise sessions. Presentations should be $5-10 \mathrm{~min}$.
- There will be some computer experiments. We will use SageMath (https://cloud.sagemath. com/). Please set up an account befor exercise class on Friday, 12th of February.
- We will not be using Absalon, but you can find everything about the course on the course website (http://www.mimuw.edu.pl/~aszek/chromatic/index.html)
- For some literature; we will not follow a single book, at least not linearly. But Michal recommends the books by West, Bondy \& Murty or Diestel. You can find the Diestel book online (go through the course website). The others should be available in the Library.

Introduction to Graph Theory.

Types of Graphs:

- A (simple) graph (we will mostly look at them)

- A multi-graph (multiple edges between a specific pair of vertices)
- A directed graph (the edges have a direction)
- A labelled graph (a labelled version of any other graph type. The edges have some more information)

Example 1. Real-world graphs. Roadmaps, tree of game, brain, chemistry (representation of chemical compounds, Systematic IUPAC), maps, scheduling (as a matching problem in a graph)

The First Problem in Graph Theory

Seven Bridges of Königsberg (now Kaliningrad, Russia) [1. Euler 2] solved this problem in 1736 and is considered to be the first problem in Graph Theory.
The problem: Is there a tour of the city which goes through each bridge once? No!
Why not?

- A closed (begins and ends at the same point) walk visits each vertex an even number of times.
- Any walk (not necessarily closed) visits its non-endpoints an even number of times.

Definition 2. A simple graph is a pair $G=(V, E)$ where
V is the set of vertices
$E \subseteq\binom{V}{2}$, is the set of edges. (A subset of the set of all 2-element subsets of V)
Example 3. A graph G with vertices $V=\{a, b, c, d\}$ and edges $E=\{\{a, b\},\{b, c\},\{a, c\},\{c, d\}\}$

Notation 4. We will be using the following notations (obs. sometimes for simplicity symbols/letters are dropped here and there, but then it should be obvious what is meant):

- $x y \in E(G)$ instead of $\{x, y\} \in E(G)$
- $N_{G}(x)=\{y: x y \in E(G)\}$ is the neighborhood of x in G. (Example above: $N(b)=\{a, c\}$)
- $x y \in E(G)$ we say x, y are adjacent, or neigbors in G.
- a vertex is incident to the edges that contain it.

- UNLESS OTHERWISE NOTED, ALL GRAPHS ARE FINITE AND SIMPLE

Example 5. Some key examples of families of graphs.

- Cycles: $C_{n}, n \geq 3$.
$V=\{1, \ldots, n\}$
$E=\{12,23, \ldots,(n-1) n, n 1\}$
- Paths: A subset of a cycle, $P_{n}, n \geq 1$
- Complete graphs: $K_{n}, n \geq 1$
$\bar{V}=\{1, \ldots, n\}$
$E=\binom{V}{2}$, all possible pairs of V
Note! $\left|E\left(K_{n}\right)\right|=\binom{n}{2}=\frac{n(n-1)}{2}$
- $\overline{K_{n}}, n \geq 1$ (the complement of a complete graph)
$V=\{1, \ldots, n\}$
$E=\varnothing$
- The Empty Graph: denoted \varnothing;
$V(\varnothing)=\varnothing$
$E(\varnothing)=\varnothing$
$E(\varnothing)=\varnothing$
Definition 6. The complement of G is the graph \bar{G} s.t.

$$
\begin{gathered}
V(\bar{G})=V(G) \\
E(\bar{G})=\binom{V(G)}{2} \backslash E(G)
\end{gathered}
$$

Example 7. $Q_{n}, n \geq 1$
$V\left(Q_{n}\right)=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,1\}\right\}$, all binary sequences of length n.
$\left(x_{1}, \ldots x_{n}\right)\left(y_{1}, \ldots, y_{n}\right) \in E\left(Q_{n}\right)$ iff $\left(x_{1}, \ldots x_{n}\right)\left(y_{1}, \ldots, y_{n}\right)$ are different in exactly one position.

- $n=1$

$$
\begin{aligned}
& V\left(Q_{1}\right)=\{0,1\} \\
& E\left(Q_{1}\right)=\{01\}
\end{aligned}
$$

- $n=2$

$$
V\left(Q_{2}\right)=\{00,01,10,11\}
$$

$$
E\left(Q_{2}\right)=\{\{00,10\},\{00,01\},\{01,11\},\{10,11\}\}
$$

- $n=3$

$$
\begin{aligned}
& V\left(Q_{3}\right)=\{000,001,010,100,011,101,110,111\} \\
& E\left(Q_{3}\right)=\{\{000,001\},\{000,010\}, \ldots,\{011,111\}\}
\end{aligned}
$$

Definition 8. $G=(V, E)$. For a vertex $v \in V$, the degree of $v, \operatorname{deg}(v)$, is the number of edges incident to v.

$$
\operatorname{deg}(v)=|N(v)|
$$

v is called isolated if $\operatorname{deg}(v)=0$
v is called a leaf if $\operatorname{deg}(v)=1$

Lemma 9.

$$
\sum_{v \in V(G)} \operatorname{deg}(v)=2 \cdot|E(G)|
$$

Proof. Obvious, the sum counts every edge twice.
A Very Formal Proof: Let M be a matrix of size $|V| \times|E|$

$$
M_{v, e}= \begin{cases}1, & \text { if } v \text { is incident to } e \\ 0, & \text { otherwise }\end{cases}
$$

This is also called the incidence matrix of G. Let's see an example before we continue with the proof.
Example 10. $V=\{a, b, c, d\}$ and $E=\{a b, b c, c d\}$.

$$
M=\begin{gathered}
\\
a \\
b \\
c \\
d
\end{gathered}\left(\begin{array}{ccc}
a b & b c & c d \\
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)
$$

Now, let's continue with the proof.
The number of $1^{\prime} s$ in M is:

$$
\begin{cases}2 \times|E|, & \left(\text { two } 1^{\prime} s \text { in each column }\right) \\ \sum_{v} \operatorname{deg}(v), & \left(\operatorname{deg}(v) 1^{\prime} s \text { in } n \text {-th row }\right)\end{cases}
$$

(this is called double counting).
Corollary 11. The number of vertices of odd degree in every graph is even.

Notation 12.

- $\Delta(G)=$ maximum vertex degree in G
- $\delta(G)=$ minimal vertex degree in G
- G is called d-regular if $\Delta(G)=\delta(G)=d$, equivalently $\forall v \in V \operatorname{deg}(v)=d$. (Example: Q_{n})

The Category of Graphs.

Definition 13. A graph, H, is a subgraph of G if:

- $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. (H is also a graph, so $E(H) \subseteq\binom{V(H)}{2}$)
- $W \subseteq V(G)$ then $\underline{G[W]}$ is the subgraph of G induced by W, which means,

$$
\begin{gathered}
V(G[W])=W \\
E(G[W])=\{x y ; x y \in E(G), x, y \in W\}
\end{gathered}
$$

Example 14. Induced subgraphs
Definition 15. $f: G \rightarrow H$ is a graph homomorphism if $f: V(G) \rightarrow V(H)$, s.t. $x y \in E(G) \Rightarrow f(x) f(y) \in E(\bar{H})$

Definition 16. G and H are isomorphic if $\exists f: G \rightarrow H$ and $g: H \rightarrow G$ s.t. $g f=1_{G}, f g=1_{H}$.
Observation 17. $1_{G}: G \rightarrow G$ is homomorphism. $f: G \rightarrow H, g: H \rightarrow K$ are homomorphisms, then so is $g f: G \rightarrow K$.

Remark 18. Deciding if two graphs are isomorphic is computationally hard. Proving non-isomorphism is usually about finding some invariant that distinguishes the two graphs.

References

[1] Seven Bridges of Königsberg, https://en.wikipedia.org/wiki/Seven_Bridges_of_K\�\% B6nigsberg
[2] Leonard Euler (1707-1783),https://en.wikipedia.org/wiki/Leonhard_Euler

