Graph coloring
 Lecture notes, vol. 10
 Hall's marriage theorem and Edge coloring vs. 4-color theorem.

In the next pages, G is always a graph, $V(G)$ its set of vertices and $E(G)$ its set of edges.

Hall's marriage theorem

G-bipartite graph with parts A, B. Suppose for any $X \subseteq A,|N(X)| \geq|X|$ where $N(X)=\bigcup_{x \in X} N_{G}(x)$. Then G has a matching of size $|A|$.
"Application": Split 52 cards into 13 piles of 4 cards each. Then we can choose 1 card from each pile, so that we have one card of each rank: $A, 2,3, \ldots, K$. Construct a bipartite graph $G, V(G)=R \cup P(R$ - ranks and P - piles). Edges are $r p \in E(G)$ if pile p has a card of rank r. A matching in G with 13 edges determines a bijection $P \longleftrightarrow R$

How does this connect to Hall's Theorem? Take any subset $X \subseteq R . X$ represents $4 \cdot|X|$ actual cards. These cards occupy $\geq|X|$ piles. This is exactly the statement $|N(X)| \geq|X|$, so Hall's theorem applies, and we have a matching of size 13. It's convenient now to use a multigraph, where many edges are allowed between two vertices

In our example I could take a bipartite multigraph G with one edge for every physical card

In this multigraph every vertex has a degree 4.
Theorem 1. If G is a d-regular bipartite multigraph, then $\chi^{\prime}(G)=d$.
Proof. $V(G)=A \cup B$ - parts of the bipartition. $|A|=|B|=n$, because $|E(G)|=d \cdot|A|=d \cdot|B|$.
Induction on d :

- $d=1: G$ itself is a matching
- $d \geq 2$: Take any $X \subseteq A$ and let e_{X} be the number of edges in $G[X, N(X)]$
$d \cdot|X|=e_{X} \leq d \cdot|N(X)|$, so $|X| \leq|N(X)|$.
By Hall's Theorem, G has a matching of size $n, M \subseteq E(G)$. Since $G-M$ is a $(d-1)$-regular multigraph, by induction $\chi^{\prime}(G) \leq 1+(d-1)=d$.

Theorem 2. (König) If G is a bipartite multigraph, then $\chi^{\prime}(G)=\Delta(G)$.
Proof. $V(G)=A \cup B$. We can assume $|A|=|B|=n$. (If not, then add extra isolated vertices to the smaller part). Write $\Delta:=\Delta(G)$. If A has a vertex v of degree $<\Delta$, then also B has some vertex of degree $<\Delta$, call it u. (Because existence of $v \Rightarrow|E|<\Delta \cdot n$). Add a new edge $u v$ to the graph. This process ends with Δ-regular bipartite H such that

$$
V(H)=V(G), E(G) \subseteq E(H)
$$

By previous theorem, $\chi^{\prime}(G) \leq \chi^{\prime}(H)=\Delta$

Edge coloring vs. the 4-color theorem.

Suppose G is a planar triangulation (a planar graph embedded so that all faces are triangles).

Definition 3. The dual graph G^{*} of G is defined by the conditions: $V\left(G^{*}\right)=$ set of faces of the given embedding of $G . F_{1} F_{2} \in E\left(G^{*}\right)$ if F_{1}, F_{2} share a common edge. (We will usually represent each vertex of G^{*} as a point inside the corresponding face)

Observation 4. By construction G^{*} has the following properties
a) G^{*} is 3-regular. (Because every fave has 3 faces neighboring via a common edge)
b) $\left|E\left(G^{*}\right)\right|=|E(G)|$

In fact every edge e of G determines an edge e^{*} of G^{*}.

c) G^{*} is planar
d) Every face of G^{*} contains exactly one vertex of G.

e) $\left|V\left(G^{*}\right)\right|=|F(G)|,\left|E\left(G^{*}\right)\right|=|E(G)|,\left|F\left(G^{*}\right)\right|=|V(G)|$.

Theorem 5. (Tait '1878, Tait's attempt at the four-color problem).
Suppose G is a planar triangulation. TFAE:
a) G is 4 -colorable
b) G^{*} is 3-colorable

Proof. - a) $\Rightarrow b$)
Take a 4-coloring $c: V(G) \rightarrow\{00,01,10,11\}$. If $e \in E(G), e=x y$ then we color e^{*} with color $f\left(e^{*}\right)=c(x) \oplus c(y)$.

\oplus is the coordinate-wise addition $\bmod 2 .(\mathrm{XOR}=$ exclusive or $)$

$$
\begin{aligned}
& 0 \oplus 0=0=1 \oplus 1 \\
& 1 \oplus 0=1=0 \oplus 1
\end{aligned}
$$

$$
01 \oplus 11=10
$$

$$
A \oplus B=00
$$

$$
\text { iff } A=B
$$

Let's check that f is an edge 3 -coloring.
$-f\left(e^{*}\right) \neq 00$ because $c(x) \neq c(y)$, therefore $\operatorname{im}(f) \subseteq\{01,10,11\}$

- Take $e^{*}, f^{*} \in E\left(G^{*}\right)$ sharing a common vertex

$$
f\left(e^{*}\right)=c(x) \oplus c(y) \neq c(y) \oplus c(z)=f\left(f^{*}\right), \text { because } c(x) \neq c(z)
$$

- b) \Rightarrow a)

Start with a 3 -coloring of $E\left(G^{*}\right)$:

$$
f: E\left(G^{*}\right) \rightarrow\{1,2,3\}
$$

Since G^{*} is 3-regular, every color appears at every vertex of G^{*}. For $i=1,2$ let $H_{i} \subseteq G^{*}$ be the subgraph on the edges $f^{-1}(i) \cup f^{-1}(3)$.

H_{i} is 2-regular, hence it is a union of cycles. Construct a coloring $c: V(G) \rightarrow\{00,01,10,11\}$ as follows:

$$
\begin{aligned}
c(v) & =x_{1} x_{2} \\
i & =1,2
\end{aligned} \quad x_{i}=\left(\# \text { cycles in } H_{i} \text { which contain } v \text { inside }\right) \quad \bmod 2
$$

$$
\begin{aligned}
& H_{1}=f^{-1}(1) \cup f^{-1}(3), c(v)=(2 \bmod 2)(1 \bmod 2) \\
& H_{2}=f^{-1}(2) \cup f^{-1}(3)
\end{aligned}
$$

The two cycles of H_{1} that contain v inside are shown below, assuming color 1 is orange and color 3 is green:

Remember: A cycle in H_{i} is a simple polygon in \mathbb{R}^{2} :

v is inside the polygon if a generic ray from v intersects the polygon an odd number of times.
This ends the example. Now we will prove that c is a vertex-coloring of G. Take $e=u v \in E(G)$. We want to show $c(u) \neq c(v)$. W.l.o.g. suppose that $f\left(e^{*}\right)=1$

We know that e^{*} belongs to some cycle C of H_{1}
$-v$ is inside C and u is outside C or vice versa.

- For any other cycle of H_{1}, both u, v are inside or both u, v are outside.

We can check both caims by counting $(\bmod 2)$ the number of times a generic ray from u, v intersects a cycle of H_{1}.
By the claim $c(v)$ and $c(u)$ differ in x_{1}. Similarly:
If $f\left(e^{*}\right)=2 \rightarrow c(v)$ and $c(u)$ differ in x_{2}
If $f\left(e^{*}\right)=3 \rightarrow c(v)$ and $c(u)$ differ in x_{1} and x_{2}
In any case $c(u) \neq c(v)$, so c is a 4 -coloring

