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In the next pages, G is always a graph, V(G) its set of vertices and F(G) its set of edges.

Hall’s marriage theorem

G-bipartite graph with parts A, B. Suppose for any X C A, [N(X)| > |X| where N(X) = U,cx Na().
Then G has a matching of size |A|.

” Application”: Split 52 cards into 13 piles of 4 cards each. Then we can choose 1 card from each pile,
so that we have one card of each rank: A,2,3,..., K. Construct a bipartite graph G, V(G) = RUP (R
— ranks and P — piles). Edges are rp € E(G) if pile p has a card of rank r. A matching in G with 13
edges determines a bijection P +— R
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How does this connect to Hall’'s Theorem? Take any subset X C R. X represents 4 - |X| actual
cards. These cards occupy > |X| piles. This is exactly the statement |N(X)| > |X]|, so Hall’s theorem
applies, and we have a matching of size 13. It’s convenient now to use a multigraph, where many edges
are allowed between two vertices

In our example I could take a bipartite multigraph G with one edge for every physical card

A QK

In this multigraph every vertex has a degree 4.
Theorem 1. If G is a d-regular bipartite multigraph, then x'(G) = d.
Proof. V(G) = AU B - parts of the bipartition. |A| = |B| = n, because |E(G)| =d-|A| =d-|B].

Induction on d:
e d=1:(G itself is a matching

e d>2: Take any X C A and let ex be the number of edges in G[X, N(X)]
d-|X| = ex < d- [N(X)], 50 |X] < [N(X)].
By Hall’s Theorem, G has a matching of size n, M C E(G). Since G — M is a (d — 1)-regular
multigraph, by induction x'(G) <1+ (d—1) =d.



Theorem 2. (Koénig) If G is a bipartite multigraph, then x'(G) = A(G).

Proof. V(G) = AU B. We can assume |A| = |B| = n. (If not, then add extra isolated vertices to the
smaller part). Write A := A(G). If A has a vertex v of degree < A, then also B has some vertex of
degree < A, call it u. (Because existence of v = |E| < A -n). Add a new edge uwv to the graph. This
process ends with A-regular bipartite H such that

By previous theorem, x'(G) < x'(H) = A O

Edge coloring vs. the 4-color theorem.

Suppose G is a planar triangulation (a planar graph embedded so that all faces are triangles).

Definition 3. The dual graph G* of G is defined by the conditions: V(G*) = set of faces of the given
embedding of G. F1Fy € E(G*) if F1,Fy share a common edge. (We will usually represent each vertex
of G* as a point inside the corresponding face)

Observation 4. By construction G* has the following properties
a) G* is 3-reqular. (Because every fave has 8 faces neighboring via a common edge)

b) |E(G™)| = |E(G)|
In fact every edge e of G determines an edge e* of G*.



¢) G* is planar

d) Every face of G* contains exactly one vertex of G.

”Dual Face”

e) [V(G")| = [F(G)], |E(GT)| = [E@G)], [F(G")] = [V(G)|.

Theorem 5. (Tait '1878, Tait’s attempt at the four-color problem).
Suppose G is a planar triangulation. TFAE:

a) G is 4-colorable
b) G* is 3-colorable

Proof. ®a)=1b)

Take a 4-coloring ¢ : V(G) — {00,01,10,11}. If e € E(G), e = xy then we color e* with color
fer) = e(x) @ e(y).

@ is the coordinate-wise addition mod 2. (XOR = exclusive or)
0e0=0=1a1 01911 =10
1le0=1=0®1 A® B =00 ifA=1B

Let’s check that f is an edge 3-coloring.
— f(e*) # 00 because c(z) # c(y), therefore im(f) C {01,10,11}



— Take e*, f* € E(G*) sharing a common vertex

fer) = c(x) @ cy) # c(y) ® c(2) = f(f7), because c(x) # c(2)

e b)=a)
Start with a 3-coloring of F(G*):
f:EG")—{1,2,3}

Since G* is 3-regular, every color appears at every vertex of G*. For ¢ = 1,2 let H; C G* be the
subgraph on the edges f~1(i) U f~1(3).

H; is 2-regular, hence it is a union of cycles. Construct a coloring ¢ : V(G) — {00,01,10,11} as
follows:

c(v) = x129
1=1,2 x; = (# cycles in H; which contain v inside) mod 2
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Uf(3), ¢(v) =(2 mod 2)(1 mod 2)
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Hy=f!
Hy=f~"
The two cycles of H; that contain v inside are shown below, assuming color 1 is orange and color
3 is green:

Remember: A cycle in H; is a simple polygon in R?:

ce

v is inside the polygon if a generic ray from v intersects the polygon an odd number of times.

This ends the example. Now we will prove that ¢ is a vertex-coloring of G. Take e = uv € E(G).
We want to show c(u) # ¢(v). W.lo.g. suppose that f(e*) =1



We know that e* belongs to some cycle C of Hy

— v is inside C and w is outside C' or vice versa.

— For any other cycle of Hy, both u,v are inside or both u,v are outside.

We can check both caims by counting (mod 2) the number of times a generic ray from u, v intersects
a cycle of Hy.

By the claim ¢(v) and ¢(u) differ in z;. Similarly:
If f(e*) =2 — ¢(v) and ¢(u) differ in 24
If f(e*) =3 — c(v) and c(u) differ in x; and x9

In any case c(u) # ¢(v), so ¢ is a 4-coloring



