Graph coloring Lecture notes, vol. 10

Hall's marriage theorem and Edge coloring vs. 4-color theorem.

Lecturer: Michal Adamaszek

Student: Hugrún Fjóla Hafsteinsdóttir

In the next pages, G is always a graph, V(G) its set of vertices and E(G) its set of edges.

Hall's marriage theorem

G-bipartite graph with parts *A*, *B*. Suppose for any $X \subseteq A$, $|N(X)| \ge |X|$ where $N(X) = \bigcup_{x \in X} N_G(x)$. Then *G* has a matching of size |A|.

"Application": Split 52 cards into 13 piles of 4 cards each. Then we can choose 1 card from each pile, so that we have one card of each rank: $A, 2, 3, \ldots, K$. Construct a bipartite graph $G, V(G) = R \cup P$ (R — ranks and P — piles). Edges are $rp \in E(G)$ if pile p has a card of rank r. A matching in G with 13 edges determines a bijection $P \longleftrightarrow R$

How does this connect to Hall's Theorem? Take any subset $X \subseteq R$. X represents $4 \cdot |X|$ actual cards. These cards occupy $\geq |X|$ piles. This is exactly the statement $|N(X)| \geq |X|$, so Hall's theorem applies, and we have a matching of size 13. It's convenient now to use a *multigraph*, where many edges are allowed between two vertices

In our example I could take a bipartite multigraph G with one edge for every physical card

In this multigraph every vertex has a degree 4.

Theorem 1. If G is a d-regular bipartite multigraph, then $\chi'(G) = d$.

- *Proof.* $V(G) = A \cup B$ parts of the bipartition. |A| = |B| = n, because $|E(G)| = d \cdot |A| = d \cdot |B|$. Induction on d:
 - d = 1 : G itself is a matching
 - $d \ge 2$: Take any $X \subseteq A$ and let e_X be the number of edges in G[X, N(X)] $d \cdot |X| = e_X \le d \cdot |N(X)|$, so $|X| \le |N(X)|$.

By Hall's Theorem, G has a matching of size n, $M \subseteq E(G)$. Since G - M is a (d-1)-regular multigraph, by induction $\chi'(G) \leq 1 + (d-1) = d$.

Proof. $V(G) = A \cup B$. We can assume |A| = |B| = n. (If not, then add extra isolated vertices to the smaller part). Write $\Delta := \Delta(G)$. If A has a vertex v of degree $< \Delta$, then also B has some vertex of degree $< \Delta$, call it u. (Because existence of $v \Rightarrow |E| < \Delta \cdot n$). Add a new edge uv to the graph. This process ends with Δ -regular bipartite H such that

$$V(H) = V(G), E(G) \subseteq E(H)$$

By previous theorem, $\chi'(G) \leq \chi'(H) = \Delta$

Edge coloring vs. the 4-color theorem.

Suppose G is a planar triangulation (a planar graph embedded so that all faces are triangles).

Definition 3. The dual graph G^* of G is defined by the conditions: $V(G^*) = set$ of faces of the given embedding of G. $F_1F_2 \in E(G^*)$ if F_1, F_2 share a common edge. (We will usually represent each vertex of G^* as a point inside the corresponding face)

Observation 4. By construction G^* has the following properties

- a) G^* is 3-regular. (Because every fave has 3 faces neighboring via a common edge)
- $b) |E(G^*)| = |E(G)|$

In fact every edge e of G determines an edge e^* of G^* .

- c) G^* is planar
- d) Every face of G^* contains exactly one vertex of G.

 $e) \ |V(G^*)| = |F(G)|, \ |E(G^*)| = |E(G)|, \ |F(G^*)| = |V(G)|.$

Theorem 5. (Tait '1878, Tait's attempt at the four-color problem). Suppose G is a planar triangulation. TFAE:

- a) G is 4-colorable
- b) G^* is 3-colorable
- *Proof.* a) \Rightarrow b)

Take a 4-coloring $c: V(G) \to \{00, 01, 10, 11\}$. If $e \in E(G)$, e = xy then we color e^* with color $f(e^*) = c(x) \oplus c(y)$.

 \oplus is the coordinate-wise addition mod 2. (XOR = exclusive or)

$0\oplus 0=0=1\oplus 1$	$01 \oplus 11 = 10$	
$1\oplus 0 = 1 = 0\oplus 1$	$A \oplus B = 00$	iff A = B

Let's check that f is an edge 3-coloring.

 $- f(e^*) \neq 00$ because $c(x) \neq c(y)$, therefore $im(f) \subseteq \{01, 10, 11\}$

– Take $e^*, f^* \in E(G^*)$ sharing a common vertex

$$f(e^*) = c(x) \oplus c(y) \neq c(y) \oplus c(z) = f(f^*)$$
, because $c(x) \neq c(z)$

• $b) \Rightarrow a)$

Start with a 3-coloring of $E(G^*)$:

$$f:E(G^*)\to\{1,2,3\}$$

Since G^* is 3-regular, every color appears at every vertex of G^* . For i = 1, 2 let $H_i \subseteq G^*$ be the subgraph on the edges $f^{-1}(i) \cup f^{-1}(3)$.

 H_i is 2-regular, hence it is a union of cycles. Construct a coloring $c:V(G)\to\{00,01,10,11\}$ as follows:

 $c(v) = x_1 x_2$ i = 1, 2 $x_i = (\# \text{ cycles in } H_i \text{ which contain } v \text{ inside}) \mod 2$

 $H_1 = f^{-1}(1) \cup f^{-1}(3), \ c(v) = (2 \mod 2)(1 \mod 2)$ $H_2 = f^{-1}(2) \cup f^{-1}(3)$

The two cycles of H_1 that contain v inside are shown below, assuming color 1 is orange and color 3 is green:

Remember: A cycle in H_i is a simple polygon in \mathbb{R}^2 :

v is inside the polygon if a generic ray from v intersects the polygon an odd number of times. This ends the example. Now we will prove that c is a vertex-coloring of G. Take $e = uv \in E(G)$. We want to show $c(u) \neq c(v)$. W.l.o.g. suppose that $f(e^*) = 1$

We know that e^* belongs to some cycle C of H_1

- -v is inside C and u is outside C or vice versa.
- For any other cycle of H_1 , both u, v are inside or both u, v are outside.

We can check both caims by counting (mod 2) the number of times a generic ray from u, v intersects a cycle of H_1 .

By the claim c(v) and c(u) differ in x_1 . Similarly:

If
$$f(e^*) = 2 \rightarrow c(v)$$
 and $c(u)$ differ in x_2
If $f(e^*) = 3 \rightarrow c(v)$ and $c(u)$ differ in x_1 and x_2

In any case $c(u) \neq c(v)$, so c is a 4-coloring