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Hall’s marriage theorem and Edge coloring vs. 4-color theorem.
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In the next pages, G is always a graph, V (G) its set of vertices and E(G) its set of edges.

Hall’s marriage theorem

G-bipartite graph with parts A,B. Suppose for any X ⊆ A, |N(X)| ≥ |X| where N(X) =
⋃

x∈X NG(x).
Then G has a matching of size |A|.

”Application”: Split 52 cards into 13 piles of 4 cards each. Then we can choose 1 card from each pile,
so that we have one card of each rank: A, 2, 3, . . . ,K. Construct a bipartite graph G, V (G) = R ∪ P (R
— ranks and P — piles). Edges are rp ∈ E(G) if pile p has a card of rank r. A matching in G with 13
edges determines a bijection P ←→ R

A 2 3 K

1 2 3 13

How does this connect to Hall’s Theorem? Take any subset X ⊆ R. X represents 4 · |X| actual
cards. These cards occupy ≥ |X| piles. This is exactly the statement |N(X)| ≥ |X|, so Hall’s theorem
applies, and we have a matching of size 13. It’s convenient now to use a multigraph, where many edges
are allowed between two vertices

In our example I could take a bipartite multigraph G with one edge for every physical card

A Q K

p

♣
♥

In this multigraph every vertex has a degree 4.

Theorem 1. If G is a d-regular bipartite multigraph, then χ′(G) = d.

Proof. V (G) = A ∪B - parts of the bipartition. |A| = |B| = n, because |E(G)| = d · |A| = d · |B|.
Induction on d:

• d = 1 : G itself is a matching

• d ≥ 2 : Take any X ⊆ A and let eX be the number of edges in G[X,N(X)]

d · |X| = eX ≤ d · |N(X)|, so |X| ≤ |N(X)|.
By Hall’s Theorem, G has a matching of size n, M ⊆ E(G). Since G −M is a (d − 1)-regular
multigraph, by induction χ′(G) ≤ 1 + (d− 1) = d.



Theorem 2. (König) If G is a bipartite multigraph, then χ′(G) = ∆(G).

Proof. V (G) = A ∪ B. We can assume |A| = |B| = n. (If not, then add extra isolated vertices to the
smaller part). Write ∆ := ∆(G). If A has a vertex v of degree < ∆, then also B has some vertex of
degree < ∆, call it u. (Because existence of v ⇒ |E| < ∆ · n). Add a new edge uv to the graph. This
process ends with ∆-regular bipartite H such that

V (H) = V (G), E(G) ⊆ E(H)

By previous theorem, χ′(G) ≤ χ′(H) = ∆

Edge coloring vs. the 4-color theorem.

Suppose G is a planar triangulation (a planar graph embedded so that all faces are triangles).

Definition 3. The dual graph G∗ of G is defined by the conditions: V (G∗) = set of faces of the given
embedding of G. F1F2 ∈ E(G∗) if F1, F2 share a common edge. (We will usually represent each vertex
of G∗ as a point inside the corresponding face)

Observation 4. By construction G∗ has the following properties

a) G∗ is 3-regular. (Because every fave has 3 faces neighboring via a common edge)

b) |E(G∗)| = |E(G)|
In fact every edge e of G determines an edge e∗ of G∗.
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c) G∗ is planar

d) Every face of G∗ contains exactly one vertex of G.

”Dual Face”

e) |V (G∗)| = |F (G)|, |E(G∗)| = |E(G)|, |F (G∗)| = |V (G)|.

Theorem 5. (Tait ’1878, Tait’s attempt at the four-color problem).
Suppose G is a planar triangulation. TFAE:

a) G is 4-colorable

b) G∗ is 3-colorable

Proof. • a) ⇒ b)

Take a 4-coloring c : V (G) → {00, 01, 10, 11}. If e ∈ E(G), e = xy then we color e∗ with color
f(e∗) = c(x)⊕ c(y).

x

y

e

e∗

⊕ is the coordinate-wise addition mod 2. (XOR = exclusive or)

0⊕ 0 = 0 = 1⊕ 1 01⊕ 11 = 10

1⊕ 0 = 1 = 0⊕ 1 A⊕B = 00 iff A = B

Let’s check that f is an edge 3-coloring.

– f(e∗) 6= 00 because c(x) 6= c(y), therefore im(f) ⊆ {01, 10, 11}
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– Take e∗, f∗ ∈ E(G∗) sharing a common vertex

x

yz

e

f

e∗

f∗

f(e∗) = c(x)⊕ c(y) 6= c(y)⊕ c(z) = f(f∗), because c(x) 6= c(z)

• b) ⇒ a)

Start with a 3-coloring of E(G∗):
f : E(G∗)→ {1, 2, 3}

Since G∗ is 3-regular, every color appears at every vertex of G∗. For i = 1, 2 let Hi ⊆ G∗ be the
subgraph on the edges f−1(i) ∪ f−1(3).

Hi is 2-regular, hence it is a union of cycles. Construct a coloring c : V (G) → {00, 01, 10, 11} as
follows:

c(v) = x1x2

i = 1, 2 xi = (# cycles in Hi which contain v inside) mod 2
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v

H1 = f−1(1) ∪ f−1(3), c(v) = (2 mod 2)(1 mod 2)

H2 = f−1(2) ∪ f−1(3)

The two cycles of H1 that contain v inside are shown below, assuming color 1 is orange and color
3 is green:

Remember: A cycle in Hi is a simple polygon in R2:

v

v is inside the polygon if a generic ray from v intersects the polygon an odd number of times.

This ends the example. Now we will prove that c is a vertex-coloring of G. Take e = uv ∈ E(G).
We want to show c(u) 6= c(v). W.l.o.g. suppose that f(e∗) = 1
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We know that e∗ belongs to some cycle C of H1

– v is inside C and u is outside C or vice versa.

– For any other cycle of H1, both u, v are inside or both u, v are outside.

We can check both caims by counting (mod 2) the number of times a generic ray from u, v intersects
a cycle of H1.

By the claim c(v) and c(u) differ in x1. Similarly:

If f(e∗) = 2→ c(v) and c(u) differ in x2

If f(e∗) = 3→ c(v) and c(u) differ in x1 and x2

In any case c(u) 6= c(v), so c is a 4-coloring

6


