Graph coloring Lecture notes, vol. 11, Vizing's Theorem. Chromatic Number of \mathbb{R}^k .

Lecturer: Michal Adamaszek

Scribe: Rolf C. Jørgensen

Theorem 1. (Vizing) For every graph G:

$$\Delta(G) \le \chi'(G) \le \Delta(G) + 1.$$

Proof. (Sketch) Let $\Delta := \Delta(G)$. We have to show that there is an edge coloring with $\Delta + 1$ colors. If $G = \overline{K_n}$ we are done.

Otherwise choose an edge $e = uv \in E(G)$. Fix $C = \{1, \ldots, \Delta + 1\}$. By induction $(\Delta(G - e) \leq \Delta)$ color the edges of G - e. Let $f : E(G) \setminus \{e\} \to C$ denote the coloring. We need to define a color of e, possibly changing some existing colors. We say a color c:

- 1. appears at a vertex x if f(xy) = c for some $xy \in E(G)$.
- 2. is missing at x, otherwise.

Since $|C| = \Delta + 1$, each vertex has at least one missing color. Define $v_0 := v$ and set c_0 to be any color missing at v_0 . If c_0 is missing at u, then set $f(uv_0) := c_0$ and we are done. Otherwise if c_0 appears at u, then set v_1 to be a vertex such that $f(uv_1) = c_0$ and c_1 any color missing at v_1 . If c_1 is missing at u shift the colors from uv_1 to uv_0 . If c_1 appears at u then choose a vertex v_2 such that $f(uv_2) = c_1$ and any color c_2 missing at v_2 . Recursively we define v_i as any vertex with $f(uv_i) = c_{i-1}$ and c_i as any missing color at v_i . This process stops when either

1. c_i is also missing at u, then shift colors from uv_i to uv_0 .

2. $c_i = c_j$ for $0 \le j < i$.

Suppose $c_i = c_j$ for $0 \le j < i$. Let c be some color missing at u. If c is also missing at v_i , set $f(uv_i) = c$ and shift colors uv_i to uv_0 , otherwise c appears at v_i . Consider the graph $f^{-1}(c) \cup f^{-1}(c_i)$. It contains a path starting at v_i . Where does it end? If the path ends at v_j , shift colors from uv_j down to uv_0 set $f(uv_j) = c$ and flip the colors on the path $v_i \to v_j$. Otherwise it ends at v_{j+1} or somewhere else, and these two cases are left as an exercise.

Remark 2. We only relied on the existence of missing colors at every vertex. We can use this observation, for example:

Proposition 3. If G has only one vertex of maximal degree, then $\chi'(G) = \Delta(G)$.

Proof. Let u have $\deg(u) = \Delta = \Delta(G)$. Pick an edge $e = uv \in E(G)$. Now $\Delta(G - e) \leq \Delta - 1$. Color the edges of G - e with Δ colors (Vizing). Again every vertex has a missing color. The recoloring part of the proof gives now an edge coloring of G with Δ colors.

Chromatic number of the Euclidean spaces

In this part we will have infinite graphs.

Definition 4. $\chi(\mathbb{R}^d)$ is the minimal number of colors required to color all points in \mathbb{R}^d so that if d(x, y) = 1 then x, y have different colors for all $x, y \in \mathbb{R}^d$, where

$$d(x,y) = \sqrt{\sum_{i} (x_i - y_i)^2}$$

Definition 5. For $X \subset \mathbb{R}^d$ define a graph U_X (U for "unit") with vertex set X and edges

$$x_1x_2 \in E(U_X)$$
 iff $d(x_1, x_2) = 1$.

Observation 6. $\chi(\mathbb{R}^d) = \chi(U_{\mathbb{R}^d}).$

Example 7. $U_{\mathbb{R}}$: $xy \in E(U_{\mathbb{R}})$ iff |x - y| = 1. $U_{\mathbb{R}}$ is a union of infinitely many (uncountably many) bi-infinite paths. $\chi(U_{\mathbb{R}}) = 2 = \chi(\mathbb{R})$.

Remark 8. All invariants $(\omega, \chi, \alpha, \Delta, ...)$ we defined still make sense for infinite graphs, except that they might be equal to ∞ . $\omega(G) \leq \chi(G)$ and $H \subset G \Rightarrow \chi(H) \leq \chi(G)$ etc. still hold.

Theorem 9. Suppose G is a graph (which may be infinite). If every finite subgraph of G can be colored with k colors, then G can be colored with k colors.

Proof. Let G = (V, E) be a graph and let X be the set of all functions $f: V \to \{1, \ldots, k\}$, i.e. $X = \prod_{v \in V} \{1, \ldots, k\} = \{1, \ldots, k\}^V$. View $\{1, \ldots, k\}$ as a discrete topological space and equip X with the product topology. $\{1, \ldots, k\}$ is finite, so it is compact. By Tychonoff's theorem X is compact. For any $F \subset E$ let $X_F \subset X$ be defined as those $f: V \to \{1, \ldots, k\}$ which are proper colorings of (V, F).

1. $X_{\{e\}}$ is closed in X since

$$X_{\{e\}} = \bigcup_{i \neq j} \{ f \in X : f(u) = i, f(v) = j, e = uv \}$$

is a finite union of closed sets.

- 2. $X_{F_1} \cap X_{F_2} = X_{F_1 \cup F_2}$.
- 3. For any $F \subset E$, X_F is closed since $X_F = \bigcap_{e \in F} X_{\{e\}}$, is an intersection of closed sets, hence closed.

Now: Take the family $\mathcal{F} = \{X_F\}_{\substack{F \subseteq E \\ F \text{ finite}}}$. All sets in \mathcal{F} are closed, and all intersections of finitely many from \mathcal{F} are non-empty (second claim: $X_{F_1} \cap \cdots \cap X_{F_n} = X_{F_1 \cup \cdots \cup F_n} \neq \emptyset$ because $(V, F_1 \cup \cdots \cup F_n)$ is finite, hence k-colorable) Then the intersection of all sets in \mathcal{F} is non-empty (by compactnes of X). $f \in \bigcap_{\substack{F \subseteq E \\ |F| \leq \infty}} X_F$ is a proper coloring on every edge of G.

What about $\chi(\mathbb{R}^2)$

Lemma 10. (easy upper-bound) $\chi(\mathbb{R}^2) \leq 9$.

Proof. Take the 3×3 -square where the length of the diagonals in each little square is 0.99. Color every such square with 9 colors (choose any neighboring color on the common edges). Use this square to tile the plane. Take two points x, y of the same color. Then

- 1. x, y are in the same small square and so $d(x, y) \leq 0.99$, or
- 2. x, y are in two different big squares and $d(x, y) \ge 2 \cdot 0.99 \cdot 1/\sqrt{2} > 1$

so $d(x, y) \neq 1$.

References

[1] West, Introduction to graph theory