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Theorem 1. (Vizing) For every graph G:

∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Proof. (Sketch) Let ∆ := ∆(G). We have to show that there is an edge coloring with ∆ + 1 colors.
If G = Kn we are done.
Otherwise choose an edge e = uv ∈ E(G). Fix C = {1, . . . ,∆ + 1}. By induction (∆(G − e) ≤ ∆)

color the edges of G − e. Let f : E(G) \ {e} → C denote the coloring. We need to define a color of e,
possibly changing some existing colors. We say a color c:

1. appears at a vertex x if f(xy) = c for some xy ∈ E(G).

2. is missing at x, otherwise.

Since |C| = ∆ + 1, each vertex has at least one missing color. Define v0 := v and set c0 to be any color
missing at v0. If c0 is missing at u, then set f(uv0) := c0 and we are done. Otherwise if c0 appears at u,
then set v1 to be a vertex such that f(uv1) = c0 and c1 any color missing at v1. If c1 is missing at u shift
the colors from uv1 to uv0. If c1 appears at u then choose a vertex v2 such that f(uv2) = c1 and any
color c2 missing at v2. Recursively we define vi as any vertex with f(uvi) = ci−1 and ci as any missing
color at vi. This process stops when either

1. ci is also missing at u, then shift colors from uvi to uv0.

2. ci = cj for 0 ≤ j < i.

Suppose ci = cj for 0 ≤ j < i. Let c be some color missing at u. If c is also missing at vi, set f(uvi) = c
and shift colors uvi to uv0, otherwise c appears at vi. Consider the graph f−1(c) ∪ f−1(ci). It contains
a path starting at vi. Where does it end? If the path ends at vj , shift colors from uvj down to uv0 set
f(uvj) = c and flip the colors on the path vi → vj . Otherwise it ends at vj+1 or somewhere else, and
these two cases are left as an exercise.

Remark 2. We only relied on the existence of missing colors at every vertex. We can use this observation,
for example:

Proposition 3. If G has only one vertex of maximal degree, then χ′(G) = ∆(G).

Proof. Let u have deg(u) = ∆ = ∆(G). Pick an edge e = uv ∈ E(G). Now ∆(G − e) ≤ ∆ − 1. Color
the edges of G− e with ∆ colors (Vizing). Again every vertex has a missing color. The recoloring part
of the proof gives now an edge coloring of G with ∆ colors.

Chromatic number of the Euclidean spaces

In this part we will have infinite graphs.

Definition 4. χ(Rd) is the minimal number of colors required to color all points in Rd so that if d(x, y) =
1 then x, y have different colors for all x, y ∈ Rd, where

d(x, y) =

√∑
i

(xi − yi)2

Definition 5. For X ⊂ Rd define a graph UX (U for “unit”) with vertex set X and edges

x1x2 ∈ E(UX) iff d(x1, x2) = 1.



Observation 6. χ(Rd) = χ(URd).

Example 7. UR: xy ∈ E(UR) iff |x − y| = 1. UR is a union of infinitely many (uncountably many)
bi-infinite paths. χ(UR) = 2 = χ(R).

Remark 8. All invariants (ω, χ, α,∆, . . .) we defined still make sense for infinite graphs, except that
they might be equal to ∞. ω(G) ≤ χ(G) and H ⊂ G⇒ χ(H) ≤ χ(G) etc. still hold.

Theorem 9. Suppose G is a graph (which may be infinite). If every finite subgraph of G can be colored
with k colors, then G can be colored with k colors.

Proof. Let G = (V,E) be a graph and let X be the set of all functions f : V → {1, . . . , k}, i.e. X =∏
v∈V {1, . . . , k} = {1, . . . , k}V . View {1, . . . , k} as a discrete topological space and equip X with the

product topology. {1, . . . , k} is finite, so it is compact. By Tychonoff’s theorem X is compact. For any
F ⊂ E let XF ⊂ X be defined as those f : V → {1, . . . , k} which are proper colorings of (V, F ).

1. X{e} is closed in X since

X{e} =
⋃
i 6=j

{f ∈ X : f(u) = i, f(v) = j, e = uv}

is a finite union of closed sets.

2. XF1
∩XF2

= XF1∪F2
.

3. For any F ⊂ E, XF is closed since XF =
⋂

e∈F X{e}, is an intersection of closed sets, hence closed.

Now: Take the family F = {XF } F⊂E

F finite
. All sets in F are closed, and all intersections of finitely many

from F are non-empty (second claim: XF1
∩ · · · ∩ XFn

= XF1∪···∪Fn
6= ∅ because (V, F1 ∪ · · · ∪ Fn)

is finite, hence k-colorable) Then the intersection of all sets in F is non-empty (by compactnes of X).
f ∈

⋂
F⊂E

|F |<∞
XF is a proper coloring on every edge of G.

What about χ(R2)

Lemma 10. (easy upper-bound) χ(R2) ≤ 9.

Proof. Take the 3× 3-square where the length of the diagonals in each little square is 0.99. Color every
such square with 9 colors (choose any neighboring color on the commom edges). Use this square to tile
the plane. Take two points x, y of the same color. Then

1. x, y are in the same small square and so d(x, y) ≤ 0.99, or

2. x, y are in two different big squares and d(x, y) ≥ 2 · 0.99 · 1/
√

2 > 1

so d(x, y) 6= 1.
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