Graph coloring

Lecture notes, vol. 11, Vizing's Theorem. Chromatic Number of \mathbb{R}^{k}.

Lecturer: Michal Adamaszek
Scribe: Rolf C. Jørgensen

Theorem 1. (Vizing) For every graph G :

$$
\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1
$$

Proof. (Sketch) Let $\Delta:=\Delta(G)$. We have to show that there is an edge coloring with $\Delta+1$ colors.
If $G=\overline{K_{n}}$ we are done.
Otherwise choose an edge $e=u v \in E(G)$. Fix $C=\{1, \ldots, \Delta+1\}$. By induction $(\Delta(G-e) \leq \Delta)$ color the edges of $G-e$. Let $f: E(G) \backslash\{e\} \rightarrow C$ denote the coloring. We need to define a color of e, possibly changing some existing colors. We say a color c :

1. appears at a vertex x if $f(x y)=c$ for some $x y \in E(G)$.
2. is missing at x, otherwise.

Since $|C|=\Delta+1$, each vertex has at least one missing color. Define $v_{0}:=v$ and set c_{0} to be any color missing at v_{0}. If c_{0} is missing at u, then set $f\left(u v_{0}\right):=c_{0}$ and we are done. Otherwise if c_{0} appears at u, then set v_{1} to be a vertex such that $f\left(u v_{1}\right)=c_{0}$ and c_{1} any color missing at v_{1}. If c_{1} is missing at u shift the colors from $u v_{1}$ to $u v_{0}$. If c_{1} appears at u then choose a vertex v_{2} such that $f\left(u v_{2}\right)=c_{1}$ and any color c_{2} missing at v_{2}. Recursively we define v_{i} as any vertex with $f\left(u v_{i}\right)=c_{i-1}$ and c_{i} as any missing color at v_{i}. This process stops when either

1. c_{i} is also missing at u, then shift colors from $u v_{i}$ to $u v_{0}$.
2. $c_{i}=c_{j}$ for $0 \leq j<i$.

Suppose $c_{i}=c_{j}$ for $0 \leq j<i$. Let c be some color missing at u. If c is also missing at v_{i}, set $f\left(u v_{i}\right)=c$ and shift colors $u v_{i}$ to $u v_{0}$, otherwise c appears at v_{i}. Consider the graph $f^{-1}(c) \cup f^{-1}\left(c_{i}\right)$. It contains a path starting at v_{i}. Where does it end? If the path ends at v_{j}, shift colors from $u v_{j}$ down to $u v_{0}$ set $f\left(u v_{j}\right)=c$ and flip the colors on the path $v_{i} \rightarrow v_{j}$. Otherwise it ends at v_{j+1} or somewhere else, and these two cases are left as an exercise.

Remark 2. We only relied on the existence of missing colors at every vertex. We can use this observation, for example:

Proposition 3. If G has only one vertex of maximal degree, then $\chi^{\prime}(G)=\Delta(G)$.
Proof. Let u have $\operatorname{deg}(u)=\Delta=\Delta(G)$. Pick an edge $e=u v \in E(G)$. Now $\Delta(G-e) \leq \Delta-1$. Color the edges of $G-e$ with Δ colors (Vizing). Again every vertex has a missing color. The recoloring part of the proof gives now an edge coloring of G with Δ colors.

Chromatic number of the Euclidean spaces

In this part we will have infinite graphs.
Definition 4. $\chi\left(\mathbb{R}^{d}\right)$ is the minimal number of colors required to color all points in \mathbb{R}^{d} so that if $d(x, y)=$ 1 then x, y have different colors for all $x, y \in \mathbb{R}^{d}$, where

$$
d(x, y)=\sqrt{\sum_{i}\left(x_{i}-y_{i}\right)^{2}}
$$

Definition 5. For $X \subset \mathbb{R}^{d}$ define a graph U_{X} (U for "unit") with vertex set X and edges

$$
x_{1} x_{2} \in E\left(U_{X}\right) \text { iff } d\left(x_{1}, x_{2}\right)=1
$$

Observation 6. $\chi\left(\mathbb{R}^{d}\right)=\chi\left(U_{\mathbb{R}^{d}}\right)$.
Example 7. $U_{\mathbb{R}}: x y \in E\left(U_{\mathbb{R}}\right)$ iff $|x-y|=1 . U_{\mathbb{R}}$ is a union of infinitely many (uncountably many) bi-infinite paths. $\chi\left(U_{\mathbb{R}}\right)=2=\chi(\mathbb{R})$.

Remark 8. All invariants ($\omega, \chi, \alpha, \Delta, \ldots$) we defined still make sense for infinite graphs, except that they might be equal to $\infty . \omega(G) \leq \chi(G)$ and $H \subset G \Rightarrow \chi(H) \leq \chi(G)$ etc. still hold.

Theorem 9. Suppose G is a graph (which may be infinite). If every finite subgraph of G can be colored with k colors, then G can be colored with k colors.

Proof. Let $G=(V, E)$ be a graph and let X be the set of all functions $f: V \rightarrow\{1, \ldots, k\}$, i.e. $X=$ $\prod_{v \in V}\{1, \ldots, k\}=\{1, \ldots, k\}^{V}$. View $\{1, \ldots, k\}$ as a discrete topological space and equip X with the product topology. $\{1, \ldots, k\}$ is finite, so it is compact. By Tychonoff's theorem X is compact. For any $F \subset E$ let $X_{F} \subset X$ be defined as those $f: V \rightarrow\{1, \ldots, k\}$ which are proper colorings of (V, F).

1. $X_{\{e\}}$ is closed in X since

$$
X_{\{e\}}=\bigcup_{i \neq j}\{f \in X: f(u)=i, f(v)=j, e=u v\}
$$

is a finite union of closed sets.
2. $X_{F_{1}} \cap X_{F_{2}}=X_{F_{1} \cup F_{2}}$.
3. For any $F \subset E, X_{F}$ is closed since $X_{F}=\bigcap_{e \in F} X_{\{e\}}$, is an intersection of closed sets, hence closed.

Now: Take the family $\mathcal{F}=\left\{X_{F}\right\}_{F \text { finite }}$. All sets in \mathcal{F} are closed, and all intersections of finitely many from \mathcal{F} are non-empty (second claim: $X_{F_{1}} \cap \cdots \cap X_{F_{n}}=X_{F_{1} \cup \cdots \cup F_{n}} \neq \emptyset$ because ($V, F_{1} \cup \cdots \cup F_{n}$) is finite, hence k-colorable) Then the intersection of all sets in \mathcal{F} is non-empty (by compactnes of X). $f \in \bigcap_{\mid F \subset E \infty}^{\mid F C}, ~ X_{F}$ is a proper coloring on every edge of G.

What about $\chi\left(\mathbb{R}^{2}\right)$

Lemma 10. (easy upper-bound) $\chi\left(\mathbb{R}^{2}\right) \leq 9$.
Proof. Take the 3×3-square where the length of the diagonals in each little square is 0.99 . Color every such square with 9 colors (choose any neighboring color on the commom edges). Use this square to tile the plane. Take two points x, y of the same color. Then

1. x, y are in the same small square and so $d(x, y) \leq 0.99$, or
2. x, y are in two different big squares and $d(x, y) \geq 2 \cdot 0.99 \cdot 1 / \sqrt{2}>1$
so $d(x, y) \neq 1$.

References

[1] West, Introduction to graph theory

