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We are about to prove an exponential lower bound χ(Rd) ≥ cd1 on the chromatic number of Rd. To
this end we introduced modified cube graphs Qd(u) with vertices x = (x1, . . . , xd), xi ∈ {0, 1} and edges
between x and y whenever x and y differ in exactly u places. (Throughout we will use the overbar x to
denote vectors). In the natural geometric embedding of the cube these edges all have the same Euclidean
length

√
u, therefore Qd(u) are unit distance graphs in Rd and χ(Rd) ≥ χ(Qd(u)).

The graphs Qd(u) give pretty good lower bounds on χ(Rd) already for small d. Here are results which
can be verified using the Sage code we wrote in the exercises:

• χ(Q5(2)) = 8. Consequently, χ(R5) ≥ 8. The best known lower bound is 9.

• α(Q10(4)) = 40 (this will take about 20min in Sage). Consequently

χ(R10) ≥ χ(Q10(4)) ≥ |V (Q10(4))|
α(Q10(4))

=
210

40
= 25.6,

that is χ(Rd) ≥ 26. This is the best known bound!

In order to prove some lower bounds valid for all d we need to add a further complication to Qd(u).

Definition 1. The graph Qd(u, s) ⊆ Qd(u) is the subgraph of Qd(u) induced by the vertices with exactly
s coordinates equal to 1. Precisely:

V (Qd(u, s)) = {x = (x1, . . . , xd) : xi ∈ {0, 1},
d∑

i=1

xi = s}

and x and y are adjacent in Qd(u, s) iff they differ in exactly u positions.

Example 2. Q3(2, 1) has vertex set {001, 010, 100} and it is isomorphic to K3.

As in the computational examples above, it is usually easier to say something about the independence
number α than directly about the chromatic number χ. Our main theorem, which we will prove in the
next part of the lecture, is the following.

Theorem 3. If p is a prime then

α(Qd(2p, 2p− 1)) ≤
(
d

0

)
+

(
d

1

)
+ · · ·+

(
d

p− 1

)
.

We will prove this theorem in a moment. Let us just note that the condition “p is a prime” suggests
that this fact is somewhat algebraic in nature. For now, let us see what this theorem buys us when it
comes to chromatic numbers.

Theorem 4. We have χ(Rd) ≥ 1.05d for sufficiently large d.

Proof. For any prime p ≤ d/2 we have

χ(Rd) ≥ χ(Qd(2p)) ≥ χ(Qd(2p, 2p− 1)) ≥ |V (Qd(2p, 2p− 1))|
α(Qd(2p, 2p− 1))

≥
(

d
2p−1

)
p
(

d
p−1
)

where in the last step we used the inequality of Theorem 3 and the observation |V (Qd(u, s))| =
(
d
s

)
.

Intuitively, the last fraction will be maximized if the binomial coefficient
(

d
2p−1

)
is close to the middle

of the d-th row of the Pascal triangle, that is when p ≈ d/4. Since we can only use p primes, we resort



to a classical number-theoretic result of Czebyschev: every interval [n, 2n] contains a prime. That allows
us to choose a prime p such that d

8 ≤ p ≤ d
4 . By carefully cancelling common factors in the binomial

coefficients we obtain:

χ(Rd) ≥ 1

p
· d− p+ 1

2p− 1
· d− p

2p− 2
· · · d− 2p+ 2

p
.

Under the condition d ≥ 4p each of the last p factors is ≥ 3
2 , so:

χ(Rd) ≥ 1

p

(3

2

)p
≥ 4

d

((3

2

) 1
8
)d
≥ 4

d
· 1.051d ≥ 1.05d

where the last inequality holds for sufficiently large d.

Proof of Theorem 3

Before jumping to the proof, let us review two combinatorial methods of proving inequalities like A ≤ B,
where A,B are some combinatorially defined quantities.

Method 1 — set comparison. If a set of size B contains a subset of size A then A ≤ B.

Example 5. We will show that
(
n
k

)
≤ 2n. The family of all subsets of {1, . . . , n} has size 2n, and it

contains the family of all k-element subsets, the latter of size
(
n
k

)
. Our inequality follows.

That was an easy and completely standard argument. Our next method is also based on an elementary
observation in linear algebra.

Method 2 — vector space comparison. If a vector space of dimension B contains A linearly
independent vectors then A ≤ B.

This may seem like an overkill, but it is actually a useful strategy in many otherwise complicated
situations (like our Theorem 3). Here is an example of how the method works: the (rather classical)
problem known as Odd–Town.

Example 6. n people participate in m clubs. Every club has an odd number of members, and every
two clubs have an even number of common members. Prove that m ≤ n.

First let’s note that we may have m = n, for example when every person forms its own one-element
club.

To solve the problem, encode the clubs C1, . . . , Cm via “membership vectors” c1, . . . , cm of length n,
where

(ci)j =

{
1 if person j belongs to club i,

0 otherwise,

for i = 1, . . . ,m, j = 1, . . . , n. If we write 〈x, y〉 =
∑

i xiyi for the standard inner product, then

〈ci, ck〉 = number of common members of Ci and Ck,

〈ci, ci〉 = number of members of Ci.

We will show that c1, . . . , cm are linearly independent. Suppose, for a contradiction, that it is not true.
Then we have a linear relation ∑

i

aici = 0

where not all ai are zero. Since the coordinates of ci are integers, we can assume that all ai ∈ Z and
moreover gcd(a1, . . . , am) = 1. In particular, ak is odd for some k. Now:

0 = 〈
∑
i

aici, ck〉 = ak〈ck, ck〉+
∑
i6=k

ai〈ci, ck〉

which is a contradiction, because ak〈ck, ck〉 is odd, while all the other terms are even.
We showed that c1, . . . , cm are linearly independent vectors in Rn. It follows that m ≤ n.
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Very similar arguments will now appear in the proof Theorem 3.

Proof of Theorem 3. As always, we write 〈x, y〉 =
∑d

i=1 xiyi. Let x and y be two different vertices of
Qd(2p, 2p − 1). Using the fact that both x and y have exactly 2p − 1 coordinates equal to 1, we easily
get

|{j : xj 6= yj}| = 2(2p− 1− |{j : xj = yj = 1}|) = 2(2p− 1− 〈x, y〉),

hence

〈x, y〉 = 2p− 1− 1

2
|{j : xj 6= yj}|.

Now if x and y are adjacent in Qd(2p, 2p− 1) then they differ in exactly 2p places, and we get 〈x, y〉 =
2p− 1− p = p− 1. Otherwise we get some other inner product between 0 and 2p− 2 (because x 6= y).
The upshot is that

〈x, y〉

{
= p− 1 if xy ∈ E(Qd(2p, 2p− 1)),

6≡ p− 1 (mod p) if xy 6∈ E(Qd(2p, 2p− 1)).

Moreover 〈x, x〉 = 2p− 1 for all x.

Take any independent set I in Qd(2p, 2p− 1). For any x ∈ I consider the function fx : {0, 1}d → R
defined for t = (t1, . . . , td) by the formula

fx(t) = 〈x, t〉p−1

(recall that zp−1 = z(z − 1) · · · (z − (p − 2)) is the falling factorial). The functions fx are naturally
elements of the R-vector space of all functions {0, 1}d → R. Let us check that the set {fx}x∈I is linearly
independent in that space. If not, then we would have a linear relation∑

x∈I
axfx = 0

for ax not all zero. As in the example before, we can assume that ax ∈ Z and gcd(ax) = 1. In particular,
some ax0 is not divisible by p. We have

0 =
∑
x∈I

axfx(x0) = ax0
〈x0, x0〉p−1 +

∑
I3x 6=x0

ax〈x, x0〉p−1.

We have 〈x0, x0〉p−1 = (2p− 1)(2p− 2) · · · (p+ 1) 6= 0 (mod p). Here we use that p is a prime! Since
I is an independent set, each 〈x, x0〉 is different from p − 1 (mod p), hence one of the factors in the
falling factorial formula for 〈x, x0〉p−1 is divisible by p. That is a contradiction, since all the terms in the
formula above are now divisible by p except for the first one.

We would now like to know dim(span{fx}x∈I). A more explicit representation of fx

fx(t1, . . . , td) =
(∑

xiti

)(∑
xiti − 1

)
· · ·
(∑

xiti − (p− 2)
)

reveals, after opening the brackets, that fx is a linear combination of monomials of degree at most p−1 in
the d variables t1, . . . , td. Since ti ∈ {0, 1}, we have t2i = ti, so fx is in fact equal to a linear combination
of square-free monomials of degree at most p − 1 in d variables. The dimension of the vector space of
such functions is

(
d
0

)
+ · · · +

(
d

p−1
)
, where

(
d
i

)
is the number of square-free monomials of degree i (that

is, products of i out of d variables).

To conclude, {fx}x∈I is a set of linearly independent vectors in a vector space of dimension
(
d
0

)
+

· · ·+
(

d
p−1
)
, which means that |I| ≤

(
d
0

)
+ · · ·+

(
d

p−1
)
, as we wanted to prove.

Remark 7. The book Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear
Algebra by Jǐr̀ı Matoušek is a recommended source if you are interested in algebraic tools in combinatorics
(preliminary version from the author’s homepage http://kam.mff.cuni.cz/~matousek/stml-53-matousek-1.pdf).
The proof above followed loosely Chapter 17.
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