Graph coloring

Lecture notes, vol. 12
Chromatic numbers of cube-like graphs.

We are about to prove an exponential lower bound $\chi\left(\mathbb{R}^{d}\right) \geq c_{1}^{d}$ on the chromatic number of \mathbb{R}^{d}. To this end we introduced modified cube graphs $Q_{d}(u)$ with vertices $\bar{x}=\left(x_{1}, \ldots, x_{d}\right), x_{i} \in\{0,1\}$ and edges between \bar{x} and \bar{y} whenever \bar{x} and \bar{y} differ in exactly u places. (Throughout we will use the overbar \bar{x} to denote vectors). In the natural geometric embedding of the cube these edges all have the same Euclidean length \sqrt{u}, therefore $Q_{d}(u)$ are unit distance graphs in \mathbb{R}^{d} and $\chi\left(\mathbb{R}^{d}\right) \geq \chi\left(Q_{d}(u)\right)$.

The graphs $Q_{d}(u)$ give pretty good lower bounds on $\chi\left(\mathbb{R}^{d}\right)$ already for small d. Here are results which can be verified using the Sage code we wrote in the exercises:

- $\chi\left(Q_{5}(2)\right)=8$. Consequently, $\chi\left(\mathbb{R}^{5}\right) \geq 8$. The best known lower bound is 9 .
- $\alpha\left(Q_{10}(4)\right)=40$ (this will take about 20min in Sage). Consequently

$$
\chi\left(\mathbb{R}^{10}\right) \geq \chi\left(Q_{10}(4)\right) \geq \frac{\left|V\left(Q_{10}(4)\right)\right|}{\alpha\left(Q_{10}(4)\right)}=\frac{2^{10}}{40}=25.6
$$

that is $\chi\left(\mathbb{R}^{d}\right) \geq 26$. This is the best known bound!
In order to prove some lower bounds valid for all d we need to add a further complication to $Q_{d}(u)$.
Definition 1. The graph $Q_{d}(u, s) \subseteq Q_{d}(u)$ is the subgraph of $Q_{d}(u)$ induced by the vertices with exactly s coordinates equal to 1. Precisely:

$$
V\left(Q_{d}(u, s)\right)=\left\{\bar{x}=\left(x_{1}, \ldots, x_{d}\right): x_{i} \in\{0,1\}, \sum_{i=1}^{d} x_{i}=s\right\}
$$

and \bar{x} and \bar{y} are adjacent in $Q_{d}(u, s)$ iff they differ in exactly u positions.
Example 2. $Q_{3}(2,1)$ has vertex set $\{001,010,100\}$ and it is isomorphic to K_{3}.
As in the computational examples above, it is usually easier to say something about the independence number α than directly about the chromatic number χ. Our main theorem, which we will prove in the next part of the lecture, is the following.

Theorem 3. If p is a prime then

$$
\alpha\left(Q_{d}(2 p, 2 p-1)\right) \leq\binom{ d}{0}+\binom{d}{1}+\cdots+\binom{d}{p-1}
$$

We will prove this theorem in a moment. Let us just note that the condition "p is a prime" suggests that this fact is somewhat algebraic in nature. For now, let us see what this theorem buys us when it comes to chromatic numbers.

Theorem 4. We have $\chi\left(\mathbb{R}^{d}\right) \geq 1.05^{d}$ for sufficiently large d.
Proof. For any prime $p \leq d / 2$ we have

$$
\chi\left(\mathbb{R}^{d}\right) \geq \chi\left(Q_{d}(2 p)\right) \geq \chi\left(Q_{d}(2 p, 2 p-1)\right) \geq \frac{\left|V\left(Q_{d}(2 p, 2 p-1)\right)\right|}{\alpha\left(Q_{d}(2 p, 2 p-1)\right)} \geq \frac{\binom{d}{2 p-1}}{p\binom{d}{p-1}}
$$

where in the last step we used the inequality of Theorem 3 and the observation $\left|V\left(Q_{d}(u, s)\right)\right|=\binom{d}{s}$.
Intuitively, the last fraction will be maximized if the binomial coefficient $\binom{d}{2 p-1}$ is close to the middle of the d-th row of the Pascal triangle, that is when $p \approx d / 4$. Since we can only use p primes, we resort
to a classical number-theoretic result of Czebyschev: every interval $[n, 2 n]$ contains a prime. That allows us to choose a prime p such that $\frac{d}{8} \leq p \leq \frac{d}{4}$. By carefully cancelling common factors in the binomial coefficients we obtain:

$$
\chi\left(\mathbb{R}^{d}\right) \geq \frac{1}{p} \cdot \frac{d-p+1}{2 p-1} \cdot \frac{d-p}{2 p-2} \cdots \frac{d-2 p+2}{p} .
$$

Under the condition $d \geq 4 p$ each of the last p factors is $\geq \frac{3}{2}$, so:

$$
\chi\left(\mathbb{R}^{d}\right) \geq \frac{1}{p}\left(\frac{3}{2}\right)^{p} \geq \frac{4}{d}\left(\left(\frac{3}{2}\right)^{\frac{1}{8}}\right)^{d} \geq \frac{4}{d} \cdot 1.051^{d} \geq 1.05^{d}
$$

where the last inequality holds for sufficiently large d.

Proof of Theorem 3

Before jumping to the proof, let us review two combinatorial methods of proving inequalities like $A \leq B$, where A, B are some combinatorially defined quantities.
Method 1 - set comparison. If a set of size B contains a subset of size A then $A \leq B$.
Example 5. We will show that $\binom{n}{k} \leq 2^{n}$. The family of all subsets of $\{1, \ldots, n\}$ has size 2^{n}, and it contains the family of all k-element subsets, the latter of size $\binom{n}{k}$. Our inequality follows.

That was an easy and completely standard argument. Our next method is also based on an elementary observation in linear algebra.
Method 2 - vector space comparison. If a vector space of dimension B contains A linearly independent vectors then $A \leq B$.

This may seem like an overkill, but it is actually a useful strategy in many otherwise complicated situations (like our Theorem 3). Here is an example of how the method works: the (rather classical) problem known as Odd-Town.

Example 6. n people participate in m clubs. Every club has an odd number of members, and every two clubs have an even number of common members. Prove that $m \leq n$.

First let's note that we may have $m=n$, for example when every person forms its own one-element club.

To solve the problem, encode the clubs C_{1}, \ldots, C_{m} via "membership vectors" $\overline{c_{1}}, \ldots, \overline{c_{m}}$ of length n, where

$$
\left(\overline{c_{i}}\right)_{j}= \begin{cases}1 & \text { if person } j \text { belongs to club } i \\ 0 & \text { otherwise }\end{cases}
$$

for $i=1, \ldots, m, j=1, \ldots, n$. If we write $\langle\bar{x}, \bar{y}\rangle=\sum_{i} x_{i} y_{i}$ for the standard inner product, then

$$
\begin{aligned}
& \left\langle\overline{c_{i}}, \overline{c_{k}}\right\rangle=\text { number of common members of } C_{i} \text { and } C_{k}, \\
& \left\langle\overline{c_{i}}, \overline{c_{i}}\right\rangle=\text { number of members of } C_{i} .
\end{aligned}
$$

We will show that $\overline{c_{1}}, \ldots, \overline{c_{m}}$ are linearly independent. Suppose, for a contradiction, that it is not true. Then we have a linear relation

$$
\sum_{i} a_{i} \overline{c_{i}}=0
$$

where not all a_{i} are zero. Since the coordinates of $\overline{c_{i}}$ are integers, we can assume that all $a_{i} \in \mathbb{Z}$ and moreover $\operatorname{gcd}\left(a_{1}, \ldots, a_{m}\right)=1$. In particular, a_{k} is odd for some k. Now:

$$
0=\left\langle\sum_{i} a_{i} \overline{c_{i}}, \overline{c_{k}}\right\rangle=a_{k}\left\langle\overline{c_{k}}, \overline{c_{k}}\right\rangle+\sum_{i \neq k} a_{i}\left\langle\overline{c_{i}}, \overline{c_{k}}\right\rangle
$$

which is a contradiction, because $a_{k}\left\langle\overline{c_{k}}, \overline{c_{k}}\right\rangle$ is odd, while all the other terms are even.
We showed that $\overline{c_{1}}, \ldots, \overline{c_{m}}$ are linearly independent vectors in \mathbb{R}^{n}. It follows that $m \leq n$.

Very similar arguments will now appear in the proof Theorem 3.
Proof of Theorem 3. As always, we write $\langle\bar{x}, \bar{y}\rangle=\sum_{i=1}^{d} x_{i} y_{i}$. Let \bar{x} and \bar{y} be two different vertices of $Q_{d}(2 p, 2 p-1)$. Using the fact that both \bar{x} and \bar{y} have exactly $2 p-1$ coordinates equal to 1 , we easily get

$$
\left|\left\{j: x_{j} \neq y_{j}\right\}\right|=2\left(2 p-1-\left|\left\{j: x_{j}=y_{j}=1\right\}\right|\right)=2(2 p-1-\langle\bar{x}, \bar{y}\rangle),
$$

hence

$$
\langle\bar{x}, \bar{y}\rangle=2 p-1-\frac{1}{2}\left|\left\{j: x_{j} \neq y_{j}\right\}\right| .
$$

Now if \bar{x} and \bar{y} are adjacent in $Q_{d}(2 p, 2 p-1)$ then they differ in exactly $2 p$ places, and we get $\langle\bar{x}, \bar{y}\rangle=$ $2 p-1-p=p-1$. Otherwise we get some other inner product between 0 and $2 p-2$ (because $\bar{x} \neq \bar{y}$). The upshot is that

$$
\langle\bar{x}, \bar{y}\rangle \begin{cases}=p-1 & \text { if } \overline{x y} \in E\left(Q_{d}(2 p, 2 p-1)\right), \\ \not \equiv p-1 & (\bmod p) \\ \text { if } \overline{x y} \notin E\left(Q_{d}(2 p, 2 p-1)\right) .\end{cases}
$$

Moreover $\langle\bar{x}, \bar{x}\rangle=2 p-1$ for all \bar{x}.
Take any independent set I in $Q_{d}(2 p, 2 p-1)$. For any $\bar{x} \in I$ consider the function $f_{\bar{x}}:\{0,1\}^{d} \rightarrow \mathbb{R}$ defined for $\bar{t}=\left(t_{1}, \ldots, t_{d}\right)$ by the formula

$$
f_{\bar{x}}(\bar{t})=\langle\bar{x}, \bar{t}\rangle \underline{p-1}
$$

(recall that $z^{\underline{p-1}}=z(z-1) \cdots(z-(p-2))$ is the falling factorial). The functions $f_{\bar{x}}$ are naturally elements of the \mathbb{R}-vector space of all functions $\{0,1\}^{d} \rightarrow \mathbb{R}$. Let us check that the set $\left\{f_{\bar{x}}\right\}_{\bar{x} \in I}$ is linearly independent in that space. If not, then we would have a linear relation

$$
\sum_{\bar{x} \in I} a_{\bar{x}} f_{\bar{x}}=0
$$

for $a_{\bar{x}}$ not all zero. As in the example before, we can assume that $a_{\bar{x}} \in \mathbb{Z}$ and $\operatorname{gcd}\left(a_{\bar{x}}\right)=1$. In particular, some $a_{\overline{x_{0}}}$ is not divisible by p. We have

$$
0=\sum_{\bar{x} \in I} a_{\bar{x}} f_{\bar{x}}\left(\overline{x_{0}}\right)=a_{\overline{x_{0}}}\left\langle\overline{x_{0}}, \overline{x_{0}}\right\rangle \frac{p-1}{}+\sum_{I \ni \bar{x} \neq \overline{x_{0}}} a_{\bar{x}}\left\langle\bar{x}, \overline{x_{0}}\right\rangle \underline{p-1} .
$$

We have $\left\langle\overline{x_{0}}, \overline{x_{0}}\right\rangle \underline{p-1}=(2 p-1)(2 p-2) \cdots(p+1) \neq 0(\bmod p)$. Here we use that p is a prime! Since I is an independent set, each $\left\langle\bar{x}, \overline{x_{0}}\right\rangle$ is different from $p-1(\bmod p)$, hence one of the factors in the falling factorial formula for $\left\langle\bar{x}, \overline{x_{0}}\right\rangle \underline{p-1}$ is divisible by p. That is a contradiction, since all the terms in the formula above are now divisible by p except for the first one.

We would now like to know $\operatorname{dim}\left(\operatorname{span}\left\{f_{\bar{x}}\right\}_{\bar{x} \in I}\right)$. A more explicit representation of $f_{\bar{x}}$

$$
f_{\bar{x}}\left(t_{1}, \ldots, t_{d}\right)=\left(\sum x_{i} t_{i}\right)\left(\sum x_{i} t_{i}-1\right) \cdots\left(\sum x_{i} t_{i}-(p-2)\right)
$$

reveals, after opening the brackets, that $f_{\bar{x}}$ is a linear combination of monomials of degree at most $p-1$ in the d variables t_{1}, \ldots, t_{d}. Since $t_{i} \in\{0,1\}$, we have $t_{i}^{2}=t_{i}$, so $f_{\bar{x}}$ is in fact equal to a linear combination of square-free monomials of degree at most $p-1$ in d variables. The dimension of the vector space of such functions is $\binom{d}{0}+\cdots+\binom{d}{p-1}$, where $\binom{d}{i}$ is the number of square-free monomials of degree i (that is, products of i out of d variables).

To conclude, $\left\{f_{\bar{x}}\right\}_{\bar{x} \in I}$ is a set of linearly independent vectors in a vector space of dimension $\binom{d}{0}+$ $\cdots+\binom{d}{p-1}$, which means that $|I| \leq\binom{ d}{0}+\cdots+\binom{d}{p-1}$, as we wanted to prove.

Remark 7. The book Thirty-three Miniatures: Mathematical and Algorithmic Applications of Linear Algebra by Jiřì Matoušek is a recommended source if you are interested in algebraic tools in combinatorics (preliminary version from the author's homepage http://kam.mff.cuni.cz/ ${ }^{\text {matousek/stml-53-matousek-1.pdf). }}$ The proof above followed loosely Chapter 17.

