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In the next pages, G is always a graph, V (G) its set of vertices and E(G) its set of edges.

Definition 1. A walk in G from u to v (u, v,∈ V (G)) is a sequence

u = x1, x2, . . . , xk = v,

such that xixi+1 ∈ E(G) for all i. This walk is called closed if u = v. Moreover:

1. G s called connected if there is a walk between any two vertices,

2. G is called disconnected otherwise.

Definition 2. The distance between u and v (u, v,∈ V (G)) is

d(u, v) :=


length of the shortest walk from u to v, if ∃ a walk between u and v

∞, if @ a walk between u and v

0, if u = v

.

Moreover the diameter of G is
diam(G) := max

u,v∈V (G)
(d(u, v)).

Exercise 3. In the definition of connectedness and distance we can replace walk with path.

Lemma 4. G is disconnected ⇐⇒ ∃ non-empty sets X,Y with V (G) = X ∪ Y , X ∩ Y = ∅ such that
there is no edge from X to Y .

Proof. (⇐) Take u ∈ X and v ∈ Y , then clearly d(u, v) =∞ and G is disconnected.
(⇒) If G is disconnected, then we can find u, v ∈ V (G) with d(u, v) =∞. We define

X := {x ∈ V (G) : d(u, x) <∞},

Y := V (G)\X.

Since u ∈ X and v ∈ Y , these two sets are non-empty. Moreover there is no edge between these two
sets: assume there exist w ∈ X, z ∈ Y such that wz ∈ E(G), then d(u, z) 6 d(u,w) + 1 <∞, which is a
contradiction.
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Trees

Definition 5. A tree is a connected graph without cycles. A forest is a graph, whose every connected
component is a tree.

Theorem 6. The following are equivalent:

1. G is a tree,

2. G is connected and |E(G)| = |V (G)| − 1,

3. Every two vertices of G are connected by exactly one path.

Proof. (3 ⇒ 1) G is already connected by assumption, hence we must only show that G has no cycles.
Assume that we an find one, then all vertices u, v from that cycle are connected by > 2 paths, which is
a contradiction.
(1⇒ 2) We work with induction on the number of vertices (let |V (G)| = n). For n = 1 we clearly have
no edges. Assume n > 2. Since G is connected we can choose an edge e ∈ E(G). Let us take a look at
G− e (G without e):

e

Removing an edge generates at most 2 connected components (call them G1 and G2), both without
cycles. Since G was a tree, G1 and G2 are connected and G − e is a forest with two components. We
can compute

|E(G)| = 1 + |E(G1)|+ |E(G2)|
i.a.︷︸︸︷
= 1 + |V (G1)| − 1 + |V (G2)| − 1 =

= |V (G1)|+ |V (G2)| − 1 = |V (G)| − 1.

(2 ⇒ 3) Assume we already proved Lemma 7, then we can find a leaf v ∈ V (G). Let w be the only
neighbour of v. G− v is again connected and we have

|E(G− v)| = |V (G− v)| − 1.

Working with induction (whose initial step is obvious) we can say that every two vertices in G − v are
connected by exactly one path, hence there is also a unique path x,w, v for every x ∈ V (G− v).

Lemma 7. Any tree has at least 2 leaves, provided that it has at least 2 vertices.

Proof. Let G be a tree with n vertices and n− 1 edges. Since G is connected, then

∀v ∈ V (G) : deg(v) > 1.

Suppose that we only have 1 leaf, then

2(n− 1)︸ ︷︷ ︸
all other vertices
have degree>2

+ 1︸︷︷︸
leaf

6
∑

v∈V (G)

deg(v) = 2(n− 1),

which is a contradiction. The same follows if we allow no leaves.
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Bipartite graphs

Definition 8. G is bipartite if there are two sets A and B with V (G) = A ∪ B, A ∩ B = ∅ such that
every edge of G has one end in each part.

Example 9. We can use bipartite graph to illustrate a scheduling problem.

Courses Lecturers

a

b

c

d

· · ·

1

2

3

4

· · ·

Example 10. • Complete bipartite graphs (Kn,m): two sets A and B (with |A| = n and |B| = m)
with all the possible edges in between.

• Trees:

set A

set B

set A

• n-cubes graphs (Qn): Vn := {(x1, . . . , xn) : xi ∈ {0, 1}} and then define

An := {(x1, . . . , xn) ∈ Vn : 2 |
n∑

i=1

xi},

Bn := {(x1, . . . , xn) ∈ Vn : 2 6 |
n∑

i=1

xi}.

Moving on one edge clearly changes the parity of the sequence, hence Vn = An ∪ Bn defines a
bipartite graph.

• Cycles: C2n is bipartite, C2n+1 is not bipartite (for n ∈ N).

Theorem 11. (König) G is bipartite iff there is no closed walk of odd length.

Proof. (⇐) If we start in A, after an odd number of steps we will be in B (since each step brings to the
other side of the graph).
(⇒) Assume that G is connected (if not, work separately in each connected component). Pick v ∈ V (G)
and define

A := {w ∈ V (G) : ∃ an even-length walk v → w},

B := {w ∈ V (G) : ∃ an odd-length walk v → w}.

• A ∪B = V (G), since G is connected.
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• A ∩B = ∅, since otherwise we could find the following situation for a w ∈ A ∩B:

v w
even

odd

This means we would have an odd closed walk.

• There is no edge between two vertices in A (resp. B), otherwise we would have the following
situation:

v ∈ B

w ∈ A

z ∈ A

odd

odd

Exercise 12. In König’s theorem we can replace closed walk with cycle (and even induced cycle).

Cliques and independent sets

Definition 13. • W ⊆ V (G) is a clique if for all x, y ∈W , x 6= y, we have xy ∈ E(G),

• W ⊆ V (G) is an independent set if for all x, y ∈W, xy /∈ E(G).

Remark 14. A clique is a subgraph that is a complete graph.

Example 15. The followings are examples of cliques.

Example 16. The followings are examples of independent sets.
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Definition 17. • The clique number of G, ω(G), is the cardinality of the biggest clique in G,

• The independence number of G, α(G), is the cardinality of the biggest independent set in G.

Observation 18. 1. α(G) = ω(G).

Proof. A clique in G is an independent set in G and vice versa.

2. If G is bipartite, then ω(G) 6 2.

Proof. If there is a triangle, then two of the vertices have to be in the same part of the bipartite
graph, which is impossible by definition.

3. ω(G) 6 2 does not imply that G is bipartite.

Proof. C5 (which is not bipartite since it is an odd cycle) has ω(C5) = 2.

Definition 19. Graphs with ω(G) 6 2 are usually called triangle-free.

Example 20. • ω(Cn) =

{
3, if n = 3

2, if n > 4
.

• α(Cn) =

{
n
2 , if 2 | n
n−1

2 , if 2 6 | n
.

• G bipartite (i.e. V (G) = A ∪B), then α(G) > max{|A|, |B|}.

• ω(Kn) = n and α(Kn) = 1.

Remark 21. α and ω are hard (meaning NP -hard) to compute.

Lemma 22. α(G) > |V (G)|
1+∆(G) .

Proof. We must find an independent set of size at least |V (G)|
1+∆(G) and we will work by induction in order

to do that. Take an arbitrary vertex v ∈ V (G) and consider the graph

G′ := G− v −NG(V ).

Clearly ∆(G′) 6 ∆(G). Using the induction assumption, G′ has an independent set X of size at least

|V (G′)|
1 + ∆(G′)

.

Consider X ∪ {v}, which (by construction) is an independent set in G.

|X ∪ {v}| = |X|+ 1 >
|V (G′)|

1 + ∆(G′)
+ 1 >

|V (G)| − (1 + ∆(G))

1 + ∆(G)
+ 1 =

|V (G)|
1 + ∆(G)

,

thanks to ∆(G′) 6 ∆(G) and considering that 1 + ∆(G) is the biggest number of vertices we can take
away while defining G′.

Algorithm 23. (The greedy algorithm) The following loop iterates > |V (G)|
1+∆(G) times.

1. Take v ∈ V (G),

2. Remove v and NG(v) (at most 1 + ∆(G) vertices),

3. Iterate using G′ := G− v −NG(V ).

Lemma 24. If f : G −→ H is a graph homomorphism, then f−1(v) is an independent set for all
v ∈ V (H).

Proof. Suppose that x, y ∈ f−1(v) and xy ∈ E(G). Then, since f is a graph homomorphism, we would
have f(x)f(y) ∈ E(H), which is impossible since f(x) = f(y) = v.
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Vertex colouring

Goal. Assign colours to the vertices of a graph, such that adjacent vertices have different colours (the
problem is optimized by finding the minimal number of colours needed for this process).

Application 25. 1. Colouring a land-map, such that the countries that share a border have different
colours. In this case the vertices represent the countries and we draw an edge whenever two
countries share a border.

2. Scheduling the timetable for an exam session. In this case the vertices represent the different
subjects offered and we draw an edge whenever there is at least a student following both courses.
Minimizing the number of colours means programming the minimal number of exam-spots, such
that each student can take all the exams he/she applied for.

Example 26. Take a graph G with 81 vertices forming a 9× 9 grid, such that the following conditions
are satisfied:

• Every row is a clique,

• Every column is a clique,

• If we divide the grid forming 9 3× 3 subgrids, each of these is a clique.

Then each possible colouring represents the solutions of a Sudoku.

Definition 27. A (vertex-)colouring of G with colour set C is a function

c : V (G) −→ C,

such that if xy ∈ E(G), then c(x) 6= c(y).

Definition 28. The chromatic number χ(G) is the smallest number k for which there is a colouring of
G with k colours. If χ(G) 6 k, then G is called k-colourable.

Definition 29. Each c−1(i) is called a color class.

Example 30. • χ(Pn) = 2,

• χ(Cn) =

{
2, if 2 | n
3, if 2 6 | n

,

• χ(Kn) = n,

• χ(Qn) = 2, since Qn is bipartite. Moreover, χ of every bipartite graph with at least one edge is 2.

Lemma 31. 1. χ(G) 6 |V (G)|,

2. χ(G) = |V (G)| ⇐⇒ G is complete,

3. χ(G) = 1⇐⇒ G ' Kn,

4. χ(G) = 2⇐⇒ G is bipartite and has at least one edge.

Proof. 1. c : |V (G)| −→ |V (G)| with c(v) = v is a colouring with exactly |V (G)| colours.

2. One direction is obvious. Let us assume G is not complete, then we can find x, y ∈ V (G) with
xy /∈ E(G). Set c(x) = c(y) and colour all the other |V (G)| − 2 vertices with different colours: this
is a colouring with |V (G)| − 1 colours.

3. One direction is obvious. For the other look at c : V (G) −→ {1} with c(x) = c(y) for all x, y ∈ V (G).
This implies xy /∈ E(G) for all x, y ∈ V (G), hence G ' Kn.

4. One direction is obvious. For the other, if χ(G) = 2 then it suffices to define A := c−1(1) and
B := c−1(2) to find the partition of the set V (G).

Remark 32. Already determining whether χ(G) 6 3 or χ(G) > 4 is hard.
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