Graph coloring
 Lecture notes, vol. 2
 Basics of graph theory and coloring

In the next pages, G is always a graph, $V(G)$ its set of vertices and $E(G)$ its set of edges.
Definition 1. A walk in G from u to $v(u, v, \in V(G))$ is a sequence

$$
u=x_{1}, x_{2}, \ldots, x_{k}=v
$$

such that $x_{i} x_{i+1} \in E(G)$ for all i. This walk is called closed if $u=v$. Moreover:

1. Gs called connected if there is a walk between any two vertices,
2. G is called disconnected otherwise.

Definition 2. The distance between u and $v(u, v, \in V(G))$ is

$$
d(u, v):= \begin{cases}\text { length of the shortest walk from } u \text { to } v, & \text { if } \exists a \text { walk between } u \text { and } v \\ \infty, & \text { if } \exists a \text { walk between } u \text { and } v \\ 0, & \text { if } u=v\end{cases}
$$

Moreover the diameter of G is

$$
\operatorname{diam}(G):=\max _{u, v \in V(G)}(d(u, v))
$$

Exercise 3. In the definition of connectedness and distance we can replace walk with path.
Lemma 4. G is disconnected $\Longleftrightarrow \exists$ non-empty sets X, Y with $V(G)=X \cup Y, X \cap Y=\emptyset$ such that there is no edge from X to Y.

Proof. (\Leftarrow) Take $u \in X$ and $v \in Y$, then clearly $d(u, v)=\infty$ and G is disconnected.
(\Rightarrow) If G is disconnected, then we can find $u, v \in V(G)$ with $d(u, v)=\infty$. We define

$$
\begin{gathered}
X:=\{x \in V(G): d(u, x)<\infty\}, \\
Y:=V(G) \backslash X .
\end{gathered}
$$

Since $u \in X$ and $v \in Y$, these two sets are non-empty. Moreover there is no edge between these two sets: assume there exist $w \in X, z \in Y$ such that $w z \in E(G)$, then $d(u, z) \leqslant d(u, w)+1<\infty$, which is a contradiction.

Trees

Definition 5. A tree is a connected graph without cycles. A forest is a graph, whose every connected component is a tree.

Theorem 6. The following are equivalent:

1. G is a tree,
2. G is connected and $|E(G)|=|V(G)|-1$,
3. Every two vertices of G are connected by exactly one path.

Proof. $(3 \Rightarrow 1) G$ is already connected by assumption, hence we must only show that G has no cycles. Assume that we an find one, then all vertices u, v from that cycle are connected by $\geqslant 2$ paths, which is a contradiction.
$(1 \Rightarrow 2)$ We work with induction on the number of vertices (let $|V(G)|=n)$. For $n=1$ we clearly have no edges. Assume $n \geqslant 2$. Since G is connected we can choose an edge $e \in E(G)$. Let us take a look at $G-e(G$ without $e)$:

Removing an edge generates at most 2 connected components (call them G_{1} and G_{2}), both without cycles. Since G was a tree, G_{1} and G_{2} are connected and $G-e$ is a forest with two components. We can compute

$$
\begin{aligned}
|E(G)| & =1+\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right| \overbrace{=}^{\text {i.a. }} 1+\left|V\left(G_{1}\right)\right|-1+\left|V\left(G_{2}\right)\right|-1= \\
& =\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-1=|V(G)|-1 .
\end{aligned}
$$

$(2 \Rightarrow 3)$ Assume we already proved Lemma 7 , then we can find a leaf $v \in V(G)$. Let w be the only neighbour of $v . G-v$ is again connected and we have

$$
|E(G-v)|=|V(G-v)|-1
$$

Working with induction (whose initial step is obvious) we can say that every two vertices in $G-v$ are connected by exactly one path, hence there is also a unique path x, w, v for every $x \in V(G-v)$.

Lemma 7. Any tree has at least 2 leaves, provided that it has at least 2 vertices.
Proof. Let G be a tree with n vertices and $n-1$ edges. Since G is connected, then

$$
\forall v \in V(G): \operatorname{deg}(v) \geqslant 1
$$

Suppose that we only have 1 leaf, then

$$
\underbrace{2(n-1)}_{\substack{\text { all other vertices } \\ \text { have degree } \geqslant 2}}+\underbrace{1}_{\text {leaf }} \leqslant \sum_{v \in V(G)} \operatorname{deg}(v)=2(n-1)
$$

which is a contradiction. The same follows if we allow no leaves.

Bipartite graphs

Definition 8. G is bipartite if there are two sets A and B with $V(G)=A \cup B, A \cap B=\emptyset$ such that every edge of G has one end in each part.

Example 9. We can use bipartite graph to illustrate a scheduling problem.

Example 10. - Complete bipartite graphs $\left(K_{n, m}\right)$: two sets A and B (with $|A|=n$ and $|B|=m$) with all the possible edges in between.

- Trees:

- n-cubes graphs $\left(Q_{n}\right): V_{n}:=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in\{0,1\}\right\}$ and then define

$$
\begin{aligned}
A_{n} & :=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V_{n}: 2 \mid \sum_{i=1}^{n} x_{i}\right\}, \\
B_{n} & :=\left\{\left(x_{1}, \ldots, x_{n}\right) \in V_{n}: 2 \nmid \sum_{i=1}^{n} x_{i}\right\} .
\end{aligned}
$$

Moving on one edge clearly changes the parity of the sequence, hence $V_{n}=A_{n} \cup B_{n}$ defines a bipartite graph.

- Cycles: $C_{2 n}$ is bipartite, $C_{2 n+1}$ is not bipartite (for $n \in \mathbb{N}$).

Theorem 11. (König) G is bipartite iff there is no closed walk of odd length.
Proof. (\Leftarrow) If we start in A, after an odd number of steps we will be in B (since each step brings to the other side of the graph).
(\Rightarrow) Assume that G is connected (if not, work separately in each connected component). Pick $v \in V(G)$ and define

$$
\begin{aligned}
A & :=\{w \in V(G): \exists \text { an even-length walk } v \rightarrow w\}, \\
B & :=\{w \in V(G): \exists \text { an odd-length walk } v \rightarrow w\} .
\end{aligned}
$$

- $A \cup B=V(G)$, since G is connected.
- $A \cap B=\emptyset$, since otherwise we could find the following situation for a $w \in A \cap B$:

This means we would have an odd closed walk.

- There is no edge between two vertices in A (resp. B), otherwise we would have the following situation:

Exercise 12. In König's theorem we can replace closed walk with cycle (and even induced cycle).

Cliques and independent sets

Definition 13. - $W \subseteq V(G)$ is a clique if for all $x, y \in W, x \neq y$, we have $x y \in E(G)$,

- $W \subseteq V(G)$ is an independent set if for all $x, y \in W, x y \notin E(G)$.

Remark 14. A clique is a subgraph that is a complete graph.
Example 15. The followings are examples of cliques.

Example 16. The followings are examples of independent sets.

Definition 17. - The clique number of $G, \omega(G)$, is the cardinality of the biggest clique in G,

- The independence number of $G, \alpha(G)$, is the cardinality of the biggest independent set in G.

Observation 18. 1. $\alpha(G)=\omega(\bar{G})$.
Proof. A clique in G is an independent set in \bar{G} and vice versa.
2. If G is bipartite, then $\omega(G) \leqslant 2$.

Proof. If there is a triangle, then two of the vertices have to be in the same part of the bipartite graph, which is impossible by definition.
3. $\omega(G) \leqslant 2$ does not imply that G is bipartite.

Proof. C_{5} (which is not bipartite since it is an odd cycle) has $\omega\left(C_{5}\right)=2$.
Definition 19. Graphs with $\omega(G) \leqslant 2$ are usually called triangle-free.
Example 20. - $\omega\left(C_{n}\right)=\left\{\begin{array}{ll}3, & \text { if } n=3 \\ 2, & \text { if } n \geqslant 4\end{array}\right.$.

- $\alpha\left(C_{n}\right)=\left\{\begin{array}{ll}\frac{n}{2}, & \text { if } 2 \mid n \\ \frac{n-1}{2}, & \text { if } 2 \nmid n\end{array}\right.$.
- G bipartite (i.e. $V(G)=A \cup B$), then $\alpha(G) \geqslant \max \{|A|,|B|\}$.
- $\omega\left(K_{n}\right)=n$ and $\alpha\left(K_{n}\right)=1$.

Remark 21. α and ω are hard (meaning $N P$-hard) to compute.
Lemma 22. $\alpha(G) \geqslant \frac{|V(G)|}{1+\Delta(G)}$.
Proof. We must find an independent set of size at least $\frac{|V(G)|}{1+\Delta(G)}$ and we will work by induction in order to do that. Take an arbitrary vertex $v \in V(G)$ and consider the graph

$$
G^{\prime}:=G-v-N_{G}(V)
$$

Clearly $\Delta\left(G^{\prime}\right) \leqslant \Delta(G)$. Using the induction assumption, G^{\prime} has an independent set X of size at least

$$
\frac{\left|V\left(G^{\prime}\right)\right|}{1+\Delta\left(G^{\prime}\right)}
$$

Consider $X \cup\{v\}$, which (by construction) is an independent set in G.

$$
|X \cup\{v\}|=|X|+1 \geqslant \frac{\left|V\left(G^{\prime}\right)\right|}{1+\Delta\left(G^{\prime}\right)}+1 \geqslant \frac{|V(G)|-(1+\Delta(G))}{1+\Delta(G)}+1=\frac{|V(G)|}{1+\Delta(G)},
$$

thanks to $\Delta\left(G^{\prime}\right) \leqslant \Delta(G)$ and considering that $1+\Delta(G)$ is the biggest number of vertices we can take away while defining G^{\prime}.

Algorithm 23. (The greedy algorithm) The following loop iterates $\geqslant \frac{|V(G)|}{1+\Delta(G)}$ times.

1. Take $v \in V(G)$,
2. Remove v and $N_{G}(v)$ (at most $1+\Delta(G)$ vertices),
3. Iterate using $G^{\prime}:=G-v-N_{G}(V)$.

Lemma 24. If $f: G \longrightarrow H$ is a graph homomorphism, then $f^{-1}(v)$ is an independent set for all $v \in V(H)$.

Proof. Suppose that $x, y \in f^{-1}(v)$ and $x y \in E(G)$. Then, since f is a graph homomorphism, we would have $f(x) f(y) \in E(H)$, which is impossible since $f(x)=f(y)=v$.

Vertex colouring

Goal. Assign colours to the vertices of a graph, such that adjacent vertices have different colours (the problem is optimized by finding the minimal number of colours needed for this process).

Application 25. 1. Colouring a land-map, such that the countries that share a border have different colours. In this case the vertices represent the countries and we draw an edge whenever two countries share a border.
2. Scheduling the timetable for an exam session. In this case the vertices represent the different subjects offered and we draw an edge whenever there is at least a student following both courses. Minimizing the number of colours means programming the minimal number of exam-spots, such that each student can take all the exams he/she applied for.

Example 26. Take a graph G with 81 vertices forming a 9×9 grid, such that the following conditions are satisfied:

- Every row is a clique,
- Every column is a clique,
- If we divide the grid forming 93×3 subgrids, each of these is a clique.

Then each possible colouring represents the solutions of a Sudoku.
Definition 27. A (vertex-)colouring of G with colour set C is a function

$$
c: V(G) \longrightarrow C
$$

such that if $x y \in E(G)$, then $c(x) \neq c(y)$.
Definition 28. The chromatic number $\chi(G)$ is the smallest number k for which there is a colouring of G with k colours. If $\chi(G) \leqslant k$, then G is called k-colourable.

Definition 29. Each $c^{-1}(i)$ is called a color class.
Example 30. - $\chi\left(P_{n}\right)=2$,

- $\chi\left(C_{n}\right)=\left\{\begin{array}{ll}2, & \text { if } 2 \mid n \\ 3, & \text { if } 2 \nmid n\end{array}\right.$,
- $\chi\left(K_{n}\right)=n$,
- $\chi\left(Q_{n}\right)=2$, since Q_{n} is bipartite. Moreover, χ of every bipartite graph with at least one edge is 2 .

Lemma 31. 1. $\chi(G) \leqslant|V(G)|$,
2. $\chi(G)=|V(G)| \Longleftrightarrow G$ is complete,
3. $\chi(G)=1 \Longleftrightarrow G \simeq \overline{K_{n}}$,
4. $\chi(G)=2 \Longleftrightarrow G$ is bipartite and has at least one edge.

Proof. 1. $c:|V(G)| \longrightarrow|V(G)|$ with $c(v)=v$ is a colouring with exactly $|V(G)|$ colours.
2. One direction is obvious. Let us assume G is not complete, then we can find $x, y \in V(G)$ with $x y \notin E(G)$. Set $c(x)=c(y)$ and colour all the other $|V(G)|-2$ vertices with different colours: this is a colouring with $|V(G)|-1$ colours.
3. One direction is obvious. For the other look at $c: V(G) \underset{\underset{K}{K}}{\longrightarrow}\{1\}$ with $c(x)=c(y)$ for all $x, y \in V(G)$. This implies $x y \notin E(G)$ for all $x, y \in V(G)$, hence $G \simeq \overline{K_{n}}$.
4. One direction is obvious. For the other, if $\chi(G)=2$ then it suffices to define $A:=c^{-1}(1)$ and $B:=c^{-1}(2)$ to find the partition of the set $V(G)$.

Remark 32. Already determining whether $\chi(G) \leqslant 3$ or $\chi(G) \geqslant 4$ is hard.

