Graph coloring Lecture notes, vol. 2 Basics of graph theory and coloring

Lecturer: Michal Adamaszek

Scribe: Giorgia L. G. Cassis

In the next pages, G is always a graph, V(G) its set of vertices and E(G) its set of edges.

Definition 1. A walk in G from u to $v (u, v, \in V(G))$ is a sequence

$$u = x_1, x_2, \dots, x_k = v,$$

such that $x_i x_{i+1} \in E(G)$ for all *i*. This walk is called closed if u = v. Moreover:

- 1. G s called connected if there is a walk between any two vertices,
- 2. G is called disconnected otherwise.

Definition 2. The distance between u and v $(u, v, \in V(G))$ is

$$d(u,v) := \begin{cases} \text{length of the shortest walk from u to } v, & \text{if } \exists \text{ a walk between u and } v \\ \infty, & \text{if } \nexists \text{ a walk between u and } v \\ 0, & \text{if } u = v \end{cases}$$

Moreover the diameter of G is

$$diam(G) := \max_{u,v \in V(G)} (d(u,v)).$$

Exercise 3. In the definition of connectedness and distance we can replace walk with path.

Lemma 4. G is disconnected $\iff \exists$ non-empty sets X, Y with $V(G) = X \cup Y$, $X \cap Y = \emptyset$ such that there is no edge from X to Y.

Proof. (\Leftarrow) Take $u \in X$ and $v \in Y$, then clearly $d(u, v) = \infty$ and G is disconnected. (\Rightarrow) If G is disconnected, then we can find $u, v \in V(G)$ with $d(u, v) = \infty$. We define

$$X := \{ x \in V(G) : \ d(u, x) < \infty \},\$$

 $Y := V(G) \backslash X.$

Since $u \in X$ and $v \in Y$, these two sets are non-empty. Moreover there is no edge between these two sets: assume there exist $w \in X$, $z \in Y$ such that $wz \in E(G)$, then $d(u, z) \leq d(u, w) + 1 < \infty$, which is a contradiction.

Trees

Definition 5. A tree is a connected graph without cycles. A forest is a graph, whose every connected component is a tree.

Theorem 6. The following are equivalent:

- 1. G is a tree,
- 2. G is connected and |E(G)| = |V(G)| 1,
- 3. Every two vertices of G are connected by exactly one path.

Proof. $(3 \Rightarrow 1)$ G is already connected by assumption, hence we must only show that G has no cycles. Assume that we an find one, then all vertices u, v from that cycle are connected by ≥ 2 paths, which is a contradiction.

 $(1 \Rightarrow 2)$ We work with induction on the number of vertices (let |V(G)| = n). For n = 1 we clearly have no edges. Assume $n \ge 2$. Since G is connected we can choose an edge $e \in E(G)$. Let us take a look at G - e (G without e):

Removing an edge generates at most 2 connected components (call them G_1 and G_2), both without cycles. Since G was a tree, G_1 and G_2 are connected and G - e is a forest with two components. We can compute

$$|E(G)| = 1 + |E(G_1)| + |E(G_2)| \stackrel{\text{i.a.}}{=} 1 + |V(G_1)| - 1 + |V(G_2)| - 1 = |V(G_1)| + |V(G_2)| - 1 = |V(G)| - 1.$$

 $(2 \Rightarrow 3)$ Assume we already proved Lemma 7, then we can find a leaf $v \in V(G)$. Let w be the only neighbour of v. G - v is again connected and we have

$$|E(G - v)| = |V(G - v)| - 1.$$

Working with induction (whose initial step is obvious) we can say that every two vertices in G - v are connected by exactly one path, hence there is also a unique path x, w, v for every $x \in V(G - v)$.

Lemma 7. Any tree has at least 2 leaves, provided that it has at least 2 vertices.

Proof. Let G be a tree with n vertices and n-1 edges. Since G is connected, then

$$\forall v \in V(G): \ deg(v) \ge 1.$$

Suppose that we only have 1 leaf, then

$$\underbrace{2(n-1)}_{\substack{\text{all other vertices} \\ \text{have degree} \ge 2}} + \underbrace{1}_{\substack{\text{leaf}}} \leqslant \sum_{v \in V(G)} deg(v) = 2(n-1),$$

which is a contradiction. The same follows if we allow no leaves.

Bipartite graphs

Definition 8. G is bipartite if there are two sets A and B with $V(G) = A \cup B$, $A \cap B = \emptyset$ such that every edge of G has one end in each part.

Example 9. We can use bipartite graph to illustrate a scheduling problem.

Example 10. • Complete bipartite graphs $(K_{n,m})$: two sets A and B (with |A| = n and |B| = m) with all the possible edges in between.

• Trees:

• *n*-cubes graphs (Q_n) : $V_n := \{(x_1, \ldots, x_n) : x_i \in \{0, 1\}\}$ and then define

$$A_n := \{ (x_1, \dots, x_n) \in V_n : 2 \mid \sum_{i=1}^n x_i \},\$$
$$B_n := \{ (x_1, \dots, x_n) \in V_n : 2 \not\mid \sum_{i=1}^n x_i \}.$$

Moving on one edge clearly changes the parity of the sequence, hence $V_n = A_n \cup B_n$ defines a bipartite graph.

• Cycles: C_{2n} is bipartite, C_{2n+1} is not bipartite (for $n \in \mathbb{N}$).

Theorem 11. (König) G is bipartite iff there is no closed walk of odd length.

Proof. (\Leftarrow) If we start in A, after an odd number of steps we will be in B (since each step brings to the other side of the graph).

 (\Rightarrow) Assume that G is connected (if not, work separately in each connected component). Pick $v \in V(G)$ and define

$$A := \{ w \in V(G) : \exists \text{ an even-length walk } v \to w \},\$$

$$B := \{ w \in V(G) : \exists an odd-length walk v \to w \}.$$

• $A \cup B = V(G)$, since G is connected.

• $A \cap B = \emptyset$, since otherwise we could find the following situation for a $w \in A \cap B$:

This means we would have an odd closed walk.

• There is no edge between two vertices in A (resp. B), otherwise we would have the following situation:

Exercise 12. In König's theorem we can replace *closed walk* with *cycle* (and even *induced cycle*).

Cliques and independent sets

Definition 13. • $W \subseteq V(G)$ is a clique if for all $x, y \in W$, $x \neq y$, we have $xy \in E(G)$,

• $W \subseteq V(G)$ is an independent set if for all $x, y \in W$, $xy \notin E(G)$.

Remark 14. A clique is a subgraph that is a complete graph.

Example 15. The followings are examples of cliques.

Example 16. The followings are examples of independent sets.

Definition 17. • The clique number of G, $\omega(G)$, is the cardinality of the biggest clique in G,

• The independence number of G, $\alpha(G)$, is the cardinality of the biggest independent set in G.

Observation 18. 1. $\alpha(G) = \omega(\overline{G})$.

Proof. A clique in G is an independent set in \overline{G} and vice versa.

2. If G is bipartite, then $\omega(G) \leq 2$.

Proof. If there is a triangle, then two of the vertices have to be in the same part of the bipartite graph, which is impossible by definition. \Box

3. $\omega(G) \leq 2$ does not imply that G is bipartite.

Proof. C_5 (which is not bipartite since it is an odd cycle) has $\omega(C_5) = 2$.

Definition 19. Graphs with $\omega(G) \leq 2$ are usually called triangle-free.

Example 20. • $\omega(C_n) = \begin{cases} 3, & \text{if } n = 3\\ 2, & \text{if } n \ge 4 \end{cases}$.

- $\alpha(C_n) = \begin{cases} \frac{n}{2}, & \text{if } 2 \mid n \\ \frac{n-1}{2}, & \text{if } 2 \not\mid n \end{cases}$.
- G bipartite (i.e. $V(G) = A \cup B$), then $\alpha(G) \ge max\{|A|, |B|\}$.
- $\omega(K_n) = n$ and $\alpha(K_n) = 1$.

Remark 21. α and ω are hard (meaning *NP*-hard) to compute.

Lemma 22. $\alpha(G) \ge \frac{|V(G)|}{1+\Delta(G)}$.

Proof. We must find an independent set of size at least $\frac{|V(G)|}{1+\Delta(G)}$ and we will work by induction in order to do that. Take an arbitrary vertex $v \in V(G)$ and consider the graph

$$G' := G - v - N_G(V).$$

Clearly $\Delta(G') \leq \Delta(G)$. Using the induction assumption, G' has an independent set X of size at least

$$\frac{|V(G')|}{1+\Delta(G')}.$$

Consider $X \cup \{v\}$, which (by construction) is an independent set in G.

$$|X \cup \{v\}| = |X| + 1 \geqslant \frac{|V(G')|}{1 + \Delta(G')} + 1 \geqslant \frac{|V(G)| - (1 + \Delta(G))}{1 + \Delta(G)} + 1 = \frac{|V(G)|}{1 + \Delta(G)},$$

thanks to $\Delta(G') \leq \Delta(G)$ and considering that $1 + \Delta(G)$ is the biggest number of vertices we can take away while defining G'.

Algorithm 23. (The greedy algorithm) The following loop iterates $\geq \frac{|V(G)|}{1+\Delta(G)}$ times.

- 1. Take $v \in V(G)$,
- 2. Remove v and $N_G(v)$ (at most $1 + \Delta(G)$ vertices),
- 3. Iterate using $G' := G v N_G(V)$.

Lemma 24. If $f : G \longrightarrow H$ is a graph homomorphism, then $f^{-1}(v)$ is an independent set for all $v \in V(H)$.

Proof. Suppose that $x, y \in f^{-1}(v)$ and $xy \in E(G)$. Then, since f is a graph homomorphism, we would have $f(x)f(y) \in E(H)$, which is impossible since f(x) = f(y) = v.

Vertex colouring

Goal. Assign colours to the vertices of a graph, such that adjacent vertices have different colours (the problem is optimized by finding the minimal number of colours needed for this process).

- **Application 25.** 1. Colouring a land-map, such that the countries that share a border have different colours. In this case the vertices represent the countries and we draw an edge whenever two countries share a border.
 - 2. Scheduling the timetable for an exam session. In this case the vertices represent the different subjects offered and we draw an edge whenever there is at least a student following both courses. Minimizing the number of colours means programming the minimal number of exam-spots, such that each student can take all the exams he/she applied for.

Example 26. Take a graph G with 81 vertices forming a 9×9 grid, such that the following conditions are satisfied:

- Every row is a clique,
- Every column is a clique,
- If we divide the grid forming 9.3×3 subgrids, each of these is a clique.

Then each possible colouring represents the solutions of a Sudoku.

Definition 27. A (vertex-)colouring of G with colour set C is a function

$$c: V(G) \longrightarrow C,$$

such that if $xy \in E(G)$, then $c(x) \neq c(y)$.

Definition 28. The chromatic number $\chi(G)$ is the smallest number k for which there is a colouring of G with k colours. If $\chi(G) \leq k$, then G is called k-colourable.

Definition 29. Each $c^{-1}(i)$ is called a color class.

Example 30. •
$$\chi(P_n) = 2$$
,
 $\begin{cases} 2, & \text{if } 2 \mid n \end{cases}$

•
$$\chi(C_n) = \begin{cases} 2, & \text{if } 2 \neq n \\ 3, & \text{if } 2 \neq n \end{cases}$$

•
$$\chi(K_n) = n$$
,

• $\chi(Q_n) = 2$, since Q_n is bipartite. Moreover, χ of every bipartite graph with at least one edge is 2. Lemma 31. 1. $\chi(G) \leq |V(G)|$,

- 2. $\chi(G) = |V(G)| \iff G$ is complete,
- 3. $\chi(G) = 1 \iff G \simeq \overline{K_n}$,
- 4. $\chi(G) = 2 \iff G$ is bipartite and has at least one edge.

Proof. 1. $c: |V(G)| \longrightarrow |V(G)|$ with c(v) = v is a colouring with exactly |V(G)| colours.

- 2. One direction is obvious. Let us assume G is not complete, then we can find $x, y \in V(G)$ with $xy \notin E(G)$. Set c(x) = c(y) and colour all the other |V(G)| 2 vertices with different colours: this is a colouring with |V(G)| 1 colours.
- 3. One direction is obvious. For the other look at $c: V(G) \longrightarrow \{1\}$ with c(x) = c(y) for all $x, y \in V(G)$. This implies $xy \notin E(G)$ for all $x, y \in V(G)$, hence $G \simeq \overline{K_n}$.
- 4. One direction is obvious. For the other, if $\chi(G) = 2$ then it suffices to define $A := c^{-1}(1)$ and $B := c^{-1}(2)$ to find the partition of the set V(G).

Remark 32. Already determining whether $\chi(G) \leq 3$ or $\chi(G) \geq 4$ is hard.