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Observation 1. Every color class is an independent set.

Proof. If c(x) = c(y) then xy /∈ E(G).

Lemma 2. The following are equivalent:

(1) G is k-colorable

(2) V (G) can be partioned into k independent sets

(3) There exists a graph homomorphism G→ Kk

Proof. (1) ⇔ (2): Assume (1) and choose a coloring c : G → {1, . . . , k}. Then c−1(1), . . . , c−1(k) parti-
tions G into k independent sets. On the other hand if (2) holds we can write V (G) = V1 ∪ · · · ∪Vk where
each Vj is an independet set and Vi ∩Vj = ∅ when i 6= j. Define a coloring c : G→ {1, . . . , k} by c(v) = i
if v ∈ Vi. Then c is clearly a coloring. So we have that (1) ⇔ (2).

(2) ⇔ (3): If f : G → Kk is a homomorphism then f−1(i) is an independent set. This shows (3) ⇒
(2). Suppose V (G) = V1 ∪ · · · ∪ Vk, Vi ∩ Vj = ∅, with each Vi an independent set. Define f : G→ Kk by
f(v) = i if v ∈ Vi. If vw ∈ E(G) then v ∈ Vi and w ∈ Vj for i 6= j. Then f(v)f(w) = ij ∈ E(Kk) since
i 6= j.

The next lemma says that “bigger graphs have bigger chromatic numbers”.

Lemma 3. If H ⊂ G (H is a subgraph of G) then χ(H) ≤ χ(G).

Proof. Any coloring c : V (G)→ C restricts to a coloring c : V (H)→ C.

Lower bounds on χ(G)

Lemma 4. For any graph G

(1) χ(G) ≥ ω(G)

(2) χ(G) ≥ |V (G)|
α(G)

Proof. (1): If ω(G) = k, then G contains a clique on k vertices, i.e. Kk ⊂ G. Then k = χ(Kk) ≤ χ(G)
by the lemma.

(2): Suppose χ(G) = k. Then some color class has size at least 1
k |V (G)|. Therefore we have an

independent set of size ≥ 1
k |V (G)|, which means α(G) ≥ 1

k |V (G)|.

Example 5. χ(C2n+1) = 3 although ω(C2n+1) = 2 for n ≥ 2. So it can happen that χ > ω.

Upper bounds on χ(G)

Definition 6. The greedy coloring relative to a vertex ordering v1, . . . vn of the vertices of G is obtained
by coloring in this order subject to the rule:

c(vi) = first available color that does not appear among N(vi) ∩ {v1, . . . vi−1}

Theorem 7. The greedy algorithm uses at most ∆(G) + 1 colors. In particular χ(G) ≤ ∆(G) + 1 for
any G.

Proof. When coloring vi at most ∆(G) colors are forbidden, because vi has at most ∆(G) neighbors, so
it has ≤ ∆(G) already colored neighbors. They use ≤ ∆(G) different colors, so at least one color from
{1, . . . ,∆(G) + 1} is available for vi.



Observation 8. There is room for improvement if we choose some special vertex ordering.

Example 9. Order the vertices so that deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn).

Theorem 10. With respect to the above ordering, the greedy method uses at most 1+maxi(min(deg(vi), i−
1)) colors. In particular χ(G) ≤ 1 + maxi min(deg(vi), i− 1).

Proof. vi has at most min(deg(vi), i− 1) neighbors among v1, . . . , vi−1.

Exercise 11. maxi min(deg(vi), i−1) ≤ ∆(G) so this bound is at least as good as ∆(G)+1 (often much
better).

Example 12. Order the v′is so that for each i, vi is some vertex of smallest degree in G[{v1, . . . , vi}]
(the sub-graph induced by {v1, . . . , vi}). Construction:

vn = vertex of minimal degree in G

vn−1 = vertex of minimal degree in G− vn
vn−2 = vertex of minimal degree in G− vn − vn−1

...

Theorem 13. With this ordering, the greedy method needs at most 1 + maxH δ(H) colors, where the
maximum is over all induced subgraphs H of G.

Proof. vi has exactly degG[{v1,...,vi}](vi) neighbors among v1, . . . , vi−1. But that number is exactly
δ(G[{v1, . . . , vi}]) ≤ maxH δ(H)

Example 14. Where χ = ∆ + 1:

(1) χ(Kn) = n = ∆(Kn) + 1

(2) χ(C2n+1) = 3 = ∆(C2n+1) + 1

Theorem 15 (Brooks). If G is a connected graph, which is not complete, nor an odd cycle, then
χ(G) ≤ ∆(G).

Proof. Let ∆ = ∆(G). If ∆ ≤ 2 then G is a path or a cycle, and the result is easy. Assume ∆ ≥ 3.
Pick any vertex v ∈ V (G) with deg(v) = ∆. Let H = G− v. The proof is by induction on the number
of vertices |V (G)|. Suppose, for contradiction, G is not ∆-colorable. H is a graph with ∆(H) ≤ ∆. By
induction (since |V (H)| = |V (G)| − 1) H is ∆(H)-colorable so in particular ∆-colorable. (Be careful:
what if H is an odd cycle or a complete graph? We dealt with these cases in the exercises). Fix any
coloring c of H with ∆ colors. Since deg(v) = ∆ we can assume that all neighbors of V have different
colors. Otherwise there is a spare color we can assign to v and G would be ∆-colorable. Label the
vertices in N(v) such that N(v) = {v1, . . . , v∆} and c(vi) = i. Define Hi,j be the subgraph of H induced
by vertices of colors i and j (i 6= j, i, j ∈ {1, . . . ,∆}).

Claim (0). Hi,j is bipartite and vi, vj ∈ V (Hi,j).

Proof. Obvious.

Claim (1). vi, vj are in the same connected component Ci,j of Hi,j

Proof. If not then Hi,j is the disjoint union of two subgraphs: Hi,j = H
(1)
i,j ∪H

(1)
i,j such that vi ∈ H(1)

i,j

and vj ∈ H
(2)
i,j . Define a new coloring c′ of H by swapping the colors in H

(2)
i,j i.e. define c′(v) = i if

c(v) = j and vice versa for all v ∈ H(2)
i,j . (The new c′ is still a coloring). With this new coloring vi and

vj have the same colors, so we have a spare color for v which as before is a contradiction.

Claim (2). Ci,j is a path.
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Proof. First note that degHi,j
(vi) = 1 because otherwise vi has two neighbors of color j. Moreover

degH(vi) ≤ ∆ − 1. Then there exist k 6= i such that we can recolor vi with color k and still have a
coloring of H and we get a spare color for v. Analogously we have degHi,j

(vj) = 1. Let u be a degree
≥ 3 vertex in Ci,j closest to vi. Then c(u) = i or c(u) = j, assume c(u) = i. Again: degH(u) ≤ ∆,
but neighbors of u have at most ∆− 2 colors. We can recolor u with some k 6= i, j. Then vi, vj land in
different components of Hi,j contrary to claim 1.

Claim (3). Ci,j ∩ Ci,k = {vi} if i 6= j 6= k 6= i.

Proof. If not then there is some u ∈ Ci,j ∩Ci,k such that u 6= vi. deg(u) ≤ ∆ and u has two neighbors of
color j and two of color k. Therefore neighbors of u use ≤ ∆− 2 colors and we can recolor u with some
color 6= i, j, k and get a proper coloring. The new coloring contradicts claim 1.

If all of v1, . . . , v∆ are pairwise adjacent then G = K∆+1, or otherwise ∆(G) ≥ ∆ + 1. So, assume
without loss of generality that v1v2 /∈ E(G). Consider the paths C1,2, C1,3. Let C1,2 = v1u · · · v2. Flip
the colors in C1,3. We get a proper coloring of G. In this new coloring C1,2 and C3,2 both contain u
contradicting claim 3.
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