Graph coloring
 Lecture notes, vol. 3, Bounds on $\chi(G)$ including Brooks Theorem

Lecturer: Michal Adamaszek
Scribe: Rolf C. Jørgensen

Observation 1. Every color class is an independent set.
Proof. If $c(x)=c(y)$ then $x y \notin E(G)$.
Lemma 2. The following are equivalent:
(1) G is k-colorable
(2) $V(G)$ can be partioned into k independent sets
(3) There exists a graph homomorphism $G \rightarrow K_{k}$

Proof. (1) $\Leftrightarrow(2)$: Assume (1) and choose a coloring $c: G \rightarrow\{1, \ldots, k\}$. Then $c^{-1}(1), \ldots, c^{-1}(k)$ partitions G into k independent sets. On the other hand if (2) holds we can write $V(G)=V_{1} \cup \cdots \cup V_{k}$ where each V_{j} is an independet set and $V_{i} \cap V_{j}=\emptyset$ when $i \neq j$. Define a coloring $c: G \rightarrow\{1, \ldots, k\}$ by $c(v)=i$ if $v \in V_{i}$. Then c is clearly a coloring. So we have that (1) $\Leftrightarrow(2)$.
$(2) \Leftrightarrow(3)$: If $f: G \rightarrow K_{k}$ is a homomorphism then $f^{-1}(i)$ is an independent set. This shows $(3) \Rightarrow$ (2). Suppose $V(G)=V_{1} \cup \cdots \cup V_{k}, V_{i} \cap V_{j}=\emptyset$, with each V_{i} an independent set. Define $f: G \rightarrow K_{k}$ by $f(v)=i$ if $v \in V_{i}$. If $v w \in E(G)$ then $v \in V_{i}$ and $w \in V_{j}$ for $i \neq j$. Then $f(v) f(w)=i j \in E\left(K_{k}\right)$ since $i \neq j$.

The next lemma says that "bigger graphs have bigger chromatic numbers".
Lemma 3. If $H \subset G$ (H is a subgraph of G) then $\chi(H) \leq \chi(G)$.
Proof. Any coloring $c: V(G) \rightarrow C$ restricts to a coloring $c: V(H) \rightarrow C$.

Lower bounds on $\chi(G)$

Lemma 4. For any graph G
(1) $\chi(G) \geq \omega(G)$
(2) $\chi(G) \geq \frac{|V(G)|}{\alpha(G)}$

Proof. (1): If $\omega(G)=k$, then G contains a clique on k vertices, i.e. $K_{k} \subset G$. Then $k=\chi\left(K_{k}\right) \leq \chi(G)$ by the lemma.
(2): Suppose $\chi(G)=k$. Then some color class has size at least $\frac{1}{k}|V(G)|$. Therefore we have an independent set of size $\geq \frac{1}{k}|V(G)|$, which means $\alpha(G) \geq \frac{1}{k}|V(G)|$.
Example 5. $\chi\left(C_{2 n+1}\right)=3$ although $\omega\left(C_{2 n+1}\right)=2$ for $n \geq 2$. So it can happen that $\chi>\omega$.

Upper bounds on $\chi(G)$

Definition 6. The greedy coloring relative to a vertex ordering $v_{1}, \ldots v_{n}$ of the vertices of G is obtained by coloring in this order subject to the rule:

$$
c\left(v_{i}\right)=\text { first available color that does not appear among } N\left(v_{i}\right) \cap\left\{v_{1}, \ldots v_{i-1}\right\}
$$

Theorem 7. The greedy algorithm uses at most $\Delta(G)+1$ colors. In particular $\chi(G) \leq \Delta(G)+1$ for any G.
Proof. When coloring v_{i} at most $\Delta(G)$ colors are forbidden, because v_{i} has at most $\Delta(G)$ neighbors, so it has $\leq \Delta(G)$ already colored neighbors. They use $\leq \Delta(G)$ different colors, so at least one color from $\{1, \ldots, \Delta(G)+1\}$ is available for v_{i}.

Observation 8. There is room for improvement if we choose some special vertex ordering.
Example 9. Order the vertices so that $\operatorname{deg}\left(v_{1}\right) \geq \operatorname{deg}\left(v_{2}\right) \geq \cdots \geq \operatorname{deg}\left(v_{n}\right)$.
Theorem 10. With respect to the above ordering, the greedy method uses at most $1+\max _{i}\left(\min \left(\operatorname{deg}\left(v_{i}\right), i-\right.\right.$ 1)) colors. In particular $\chi(G) \leq 1+\max _{i} \min \left(\operatorname{deg}\left(v_{i}\right), i-1\right)$.

Proof. v_{i} has at most $\min \left(\operatorname{deg}\left(v_{i}\right), i-1\right)$ neighbors among v_{1}, \ldots, v_{i-1}.
Exercise 11. $\max _{i} \min \left(\operatorname{deg}\left(v_{i}\right), i-1\right) \leq \Delta(G)$ so this bound is at least as good as $\Delta(G)+1$ (often much better).

Example 12. Order the $v_{i}^{\prime} s$ so that for each i, v_{i} is some vertex of smallest degree in $G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]$ (the sub-graph induced by $\left\{v_{1}, \ldots, v_{i}\right\}$). Construction:

$$
\begin{aligned}
v_{n} & =\text { vertex of minimal degree in } G \\
v_{n-1} & =\text { vertex of minimal degree in } G-v_{n} \\
v_{n-2} & =\text { vertex of minimal degree in } G-v_{n}-v_{n-1}
\end{aligned}
$$

Theorem 13. With this ordering, the greedy method needs at most $1+\max _{H} \delta(H)$ colors, where the maximum is over all induced subgraphs H of G.

Proof. v_{i} has exactly $\operatorname{deg}_{G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]}\left(v_{i}\right)$ neighbors among v_{1}, \ldots, v_{i-1}. But that number is exactly $\delta\left(G\left[\left\{v_{1}, \ldots, v_{i}\right\}\right]\right) \leq \max _{H} \delta(H)$

Example 14. Where $\chi=\Delta+1$:
(1) $\chi\left(K_{n}\right)=n=\Delta\left(K_{n}\right)+1$
(2) $\chi\left(C_{2 n+1}\right)=3=\Delta\left(C_{2 n+1}\right)+1$

Theorem 15 (Brooks). If G is a connected graph, which is not complete, nor an odd cycle, then $\chi(G) \leq \Delta(G)$.

Proof. Let $\Delta=\Delta(G)$. If $\Delta \leq 2$ then G is a path or a cycle, and the result is easy. Assume $\Delta \geq 3$. Pick any vertex $v \in V(G)$ with $\operatorname{deg}(v)=\Delta$. Let $H=G-v$. The proof is by induction on the number of vertices $|V(G)|$. Suppose, for contradiction, G is not Δ-colorable. H is a graph with $\Delta(H) \leq \Delta$. By induction (since $|V(H)|=|V(G)|-1) H$ is $\Delta(H)$-colorable so in particular Δ-colorable. (Be careful: what if H is an odd cycle or a complete graph? We dealt with these cases in the exercises). Fix any coloring c of H with Δ colors. Since $\operatorname{deg}(v)=\Delta$ we can assume that all neighbors of V have different colors. Otherwise there is a spare color we can assign to v and G would be Δ-colorable. Label the vertices in $N(v)$ such that $N(v)=\left\{v_{1}, \ldots, v_{\Delta}\right\}$ and $c\left(v_{i}\right)=i$. Define $H_{i, j}$ be the subgraph of H induced by vertices of colors i and $j(i \neq j, i, j \in\{1, \ldots, \Delta\})$.
Claim (0). $H_{i, j}$ is bipartite and $v_{i}, v_{j} \in V\left(H_{i, j}\right)$.
Proof. Obvious.
Claim (1). v_{i}, v_{j} are in the same connected component $C_{i, j}$ of $H_{i, j}$
Proof. If not then $H_{i, j}$ is the disjoint union of two subgraphs: $H_{i, j}=H_{i, j}^{(1)} \cup H_{i, j}^{(1)}$ such that $v_{i} \in H_{i, j}^{(1)}$ and $v_{j} \in H_{i, j}^{(2)}$. Define a new coloring c^{\prime} of H by swapping the colors in $H_{i, j}^{(2)}$ i.e. define $c^{\prime}(v)=i$ if $c(v)=j$ and vice versa for all $v \in H_{i, j}^{(2)}$. (The new c^{\prime} is still a coloring). With this new coloring v_{i} and v_{j} have the same colors, so we have a spare color for v which as before is a contradiction.

Claim (2). $C_{i, j}$ is a path.

Proof. First note that $\operatorname{deg}_{H_{i, j}}\left(v_{i}\right)=1$ because otherwise v_{i} has two neighbors of color j. Moreover $\operatorname{deg}_{H}\left(v_{i}\right) \leq \Delta-1$. Then there exist $k \neq i$ such that we can recolor v_{i} with color k and still have a coloring of H and we get a spare color for v. Analogously we have $\operatorname{deg}_{H_{i, j}}\left(v_{j}\right)=1$. Let u be a degree ≥ 3 vertex in $C_{i, j}$ closest to v_{i}. Then $c(u)=i$ or $c(u)=j$, assume $c(u)=i$. Again: $\operatorname{deg}_{H}(u) \leq \Delta$, but neighbors of u have at most $\Delta-2$ colors. We can recolor u with some $k \neq i, j$. Then v_{i}, v_{j} land in different components of $H_{i, j}$ contrary to claim 1 .

Claim (3). $C_{i, j} \cap C_{i, k}=\left\{v_{i}\right\}$ if $i \neq j \neq k \neq i$.
Proof. If not then there is some $u \in C_{i, j} \cap C_{i, k}$ such that $u \neq v_{i}$. $\operatorname{deg}(u) \leq \Delta$ and u has two neighbors of color j and two of color k. Therefore neighbors of u use $\leq \Delta-2$ colors and we can recolor u with some color $\neq i, j, k$ and get a proper coloring. The new coloring contradicts claim 1 .

If all of $v_{1}, \ldots, v_{\Delta}$ are pairwise adjacent then $G=K_{\Delta+1}$, or otherwise $\Delta(G) \geq \Delta+1$. So, assume without loss of generality that $v_{1} v_{2} \notin E(G)$. Consider the paths $C_{1,2}, C_{1,3}$. Let $C_{1,2}=v_{1} u \cdots v_{2}$. Flip the colors in $C_{1,3}$. We get a proper coloring of G. In this new coloring $C_{1,2}$ and $C_{3,2}$ both contain u contradicting claim 3 .

References

[1] West, Introduction to graph theory

