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Accuracy of lower bounds

We know that χ(G) ≥ ω(G)
If G = C2n+1, n ≥ 2 then ω(G) = 2, χ(G) = 3
Q: Is there a graph with ω(G) = 2 and χ(G) = 4?
A: Yes the smallest such is the Grötszch graph on 11 vertices G11

https://en.wikipedia.org/wiki/Grötzsch graph

It is not possible to bound χ(G) in terms of ω(G).

Theorem 1. For any k ≥ 2 there is a triangle-free graph with χ(G) = k

Definition 2. Suppose G is a graph with V (G) = {v1, .., vn}. The Mycielski construction M(G) is a new
graph with V (M(G)) = {v1, .., vn} ∪ {u1, .., un} ∪ {w}, E(M(G)) = {wui, i = 1, .., n} ∪ {vivj , uivj :
vivj ∈ E(G)}.
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As an example have that M(K2) = C5 and M(C5) = G11.

Theorem 3. (restated) If G is triangle-free and χ(G) = k then M(G) is triangle free and χ(M(G)) =
k + 1.

Proof. 1. M(G) is still triangle free
The only possibility is a triangle with 1 vertex from U and 2 vertices from V . However, by the
definition of M(G) we then have that vivjvk is a triangle, contradicting that G was triangle-free.

2. M(G) is k + 1 colorable
We can color G with k colors (The set V in the picture). We use another color (k + 1) for all
vertices in U , and the last node w is colored with some color different from (k + 1)

3. M(G) is not k-colorable.
Suppose otherwise, c : V (M(G)) → {1, .., k}. Suppose wlog that w has color k, then U is colored
with k − 1 colors. (Our goal is to show that we can color G with k − 1 colors)
Let A = {vi ∈ V, c(vi) = k}.
Recolor A by changing the color of each vi to c(ui)

c′(vi) =

{
c(vi) if c(vi) 6= k
c(ui) if c(vi) = k

C ′ uses only colors {1, .., k − 1}. Let’s check that c′ is a coloring of G. Suppose c′(vi) = c′(vj)

https://en.wikipedia.org/wiki/Gr�tzsch_graph


(a) If both of these vi, vj /∈ A then vivj /∈ E(G)

(b) If vi ∈ A, vj /∈ A. Suppose vivj ∈ E(G), so that uivj ∈ E(M(G))
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Then c(ui) = c′(vi) = c′(vj) = c(vj) Contradicting that c is a coloring of M(G)

(c) If vi, vj ∈ A. Then c(vi) = c(vj) = k ⇒ vivj /∈ E(G)

Recap: We can have triangle-free graphs with arbitrarily high χ. But is M(G) just a special con-
struction that achieves this? Not really. We will see that in the following:

Probabilistic method

Goal: Prove that objects with an interesting property P exists by showing that a random object has P
with non-zero probability. For example: P =”triangle-free and χ(G) ≥ k”

Definition 4. (construction). Fix V = {1, .., n}, 0 ≤ p ≤ 1. Construct a graph on V by taking each
edge ij, 0 ≤ i < j ≤ n with probability p, independently for each each pair.
G(n, p) is the probability space of all graphs obtained in this way.

A graph G ∈ G(n, p) has probability

P(G) = p|E(G)|(1− p)(
n
2)−|E(G)|.

The expected number of edges/triangles in a random graph from G(n, p) is

E[#edges] =

(
n

2

)
P[ij is an edge] = p

(
n

2

)

E[#of triangles in G(n, p)] =

(
n

3

)
P[ijk is a triangle] =

(
n

3

)
p3

Sage can generate random graphs from G(n, p) (graphs.randomGNP(n, p)). For the next part we need
a few prerequisites:

1. 1− x ≤ e−x,

2.
(
n
k

)
≤ nk,

3. Markov’s inequality: if X is a non-negative random variable, t > 0, then P[X > t] ≤ 1
tE[X].

Theorem 5. For every k ≥ 2 there is a triangle-free graph with χ(G) ≥ k.

Remark: Not only ”there is” but ”there are many”.

Proof. Take G ∈ G(n, p) where p = 1
n5/6 . Let X = # of triangles in G.

E[X] =
(
n
3

)
p3 ≤ n1/2. By Markov’s inequality P[X > 10n1/2] ≤ 1

10 , which means that a typical G has
very few triangles.
To show that χ(G) is ”large” we will prove that α(G) is ”small”. Let a = 3

p lnn

P[α(G) ≥ a] ≤
(
n

a

)
P[exists independent set of size a] =

(
n

a

)
(1− p)(

a
2) ≤ nae−p(

a
2) → 0, n→∞
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where the last limit can be computed by plugging in the formulae for p and a in terms of n.
For sufficiently large n we have P[α(G) ≥ a] < 1

10 . Then

P[X < 10
√
n and α(G) < a] ≥ 8

10
.

We showed, with probability ≥ 8
10 , a random graph from G(n, p), p = 1

n5/6 , has < 10
√
n triangles,

and α(G) < a < 3n5/6 lnn
Completing the proof:
Take such a random G. Remove at most 10

√
n vertices so we get a triangle free graph G′

|V (G′)| ≥ n
2 (for large n) and

χ(G′) ≥ |V (G′)|
α(G′)

≥ n/2

3n5/6 lnn
=

1

6

n1/6

lnn
→∞, n→∞

So χ(G′) can be arbitrarily large

χ of some constructions on graphs

1. Disjoint union GtH. χ(GtH) = max(χ(G), χ(H)). As G ⊆ GtH ⊇ H, we need at least enough
colors to color H,G individually.

2. Wedge G ∨H Graphs joined at a single vertex.

G H

χ(G∨H) = max(χ(G), χ(H). After coloring G color H, perhaps permuting the colors so that they
agree on the common vertex..

3. The sum (join) G+H. It is the disjoint union together with all edges between V (G) and V (H)
χ(G+H) = χ(G) + χ(H). As the colors of G must be different from the colors of H.

4. The cartesian product G�H
V (G�H) = V (G)× V (H)
{(u, v), (u′, v′)} is an edge iff (u = u′ and vv′ ∈ E(H)) or (uu′ ∈ E(G) and v = v′).

Lemma 6. χ(G�H) = max(χ(G), χ(H))

Proof. G ⊆ G�H ⊇ H so χ(G�H) ≥ max(χ(G), χ(H)). Suppose G and H both have coloring
with color set {0, .., k − 1} (k = max(χ(G), χ(H))). Le these colorings be

f : V (G)→ {0, .., k − 1},

f ′ : V (H)→ {0, .., k − 1}.
Define F (u, v) = f(u) + f ′(v) mod k. We will check that F is a coloring. Let (u, v)(u′, v′) ∈
E(G�H). Wlog let u = u′ and vv′ ∈ E(H), then:

F (u, v) = f(u) + f ′(v) mod k

F (u′, v′) = f(u′) + f ′(v′) mod k

= f(u) + f ′(v′) mod k

6= f(u) + f ′(v) mod k because vv′ ∈ E(H)

= F (u, v).
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As an exercise, show that χ(G) ≥ h iff α(G�Kk) ≥ |V (G)|.
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