Graph coloring

Lecture notes, vol. 4
Accuracy of lower bounds, probabilistic method and χ of some constructions

Accuracy of lower bounds

We know that $\chi(G) \geq \omega(G)$
If $G=C_{2 n+1}, \quad n \geq 2$ then $\omega(G)=2, \quad \chi(G)=3$
Q: Is there a graph with $\omega(G)=2$ and $\chi(G)=4$?
A: Yes the smallest such is the Grötszch graph on 11 vertices G_{11} https://en.wikipedia.org/wiki/Grötzsch_graph

It is not possible to bound $\chi(G)$ in terms of $\omega(G)$.
Theorem 1. For any $k \geq 2$ there is a triangle-free graph with $\chi(G)=k$
Definition 2. Suppose G is a graph with $V(G)=\left\{v_{1}, . ., v_{n}\right\}$. The Mycielski construction $M(G)$ is a new graph with $V(M(G))=\left\{v_{1}, . ., v_{n}\right\} \cup\left\{u_{1}, . ., u_{n}\right\} \cup\{w\}, \quad E(M(G))=\left\{w u_{i}, i=1, . ., n\right\} \cup\left\{v_{i} v_{j}, u_{i} v_{j}:\right.$ $\left.v_{i} v_{j} \in E(G)\right\}$.

As an example have that $M\left(K_{2}\right)=C_{5}$ and $M\left(C_{5}\right)=G_{11}$.
Theorem 3. (restated) If G is triangle-free and $\chi(G)=k$ then $M(G)$ is triangle free and $\chi(M(G))=$ $k+1$.

Proof. 1. $M(G)$ is still triangle free
The only possibility is a triangle with 1 vertex from U and 2 vertices from V. However, by the definition of $M(G)$ we then have that $v_{i} v_{j} v_{k}$ is a triangle, contradicting that G was triangle-free.
2. $M(G)$ is $k+1$ colorable

We can color G with k colors (The set V in the picture). We use another color $(k+1)$ for all vertices in U, and the last node w is colored with some color different from $(k+1)$
3. $M(G)$ is not k-colorable.

Suppose otherwise, $c: V(M(G)) \rightarrow\{1, . ., k\}$. Suppose wlog that w has color k, then U is colored with $k-1$ colors. (Our goal is to show that we can color G with $k-1$ colors)
Let $A=\left\{v_{i} \in V, c\left(v_{i}\right)=k\right\}$.
Recolor A by changing the color of each v_{i} to $c\left(u_{i}\right)$

$$
c^{\prime}\left(v_{i}\right)= \begin{cases}c\left(v_{i}\right) & \text { if } c\left(v_{i}\right) \neq k \\ c\left(u_{i}\right) & \text { if } c\left(v_{i}\right)=k\end{cases}
$$

C^{\prime} uses only colors $\{1, . ., k-1\}$. Let's check that c^{\prime} is a coloring of G. Suppose $c^{\prime}\left(v_{i}\right)=c^{\prime}\left(v_{j}\right)$
(a) If both of these $v_{i}, v_{j} \notin A$ then $v_{i} v_{j} \notin E(G)$
(b) If $v_{i} \in A, v_{j} \notin A$. Suppose $v_{i} v_{j} \in E(G)$, so that $u_{i} v_{j} \in E(M(G))$

Then $c\left(u_{i}\right)=c^{\prime}\left(v_{i}\right)=c^{\prime}\left(v_{j}\right)=c\left(v_{j}\right)$ Contradicting that c is a coloring of $M(G)$
(c) If $v_{i}, v_{j} \in A$. Then $c\left(v_{i}\right)=c\left(v_{j}\right)=k \Rightarrow v_{i} v_{j} \notin E(G)$

Recap: We can have triangle-free graphs with arbitrarily high χ. But is $M(G)$ just a special construction that achieves this? Not really. We will see that in the following:

Probabilistic method

Goal: Prove that objects with an interesting property P exists by showing that a random object has P with non-zero probability. For example: $P=$ "triangle-free and $\chi(G) \geq k$ "

Definition 4. (construction). Fix $V=\{1, . ., n\}, 0 \leq p \leq 1$. Construct a graph on V by taking each edge $i j, 0 \leq i<j \leq n$ with probability p, independently for each each pair. $G(n, p)$ is the probability space of all graphs obtained in this way.

A graph $G \in G(n, p)$ has probability

$$
\mathbb{P}(G)=p^{|E(G)|}(1-p)^{\binom{n}{2}-|E(G)|} .
$$

The expected number of edges/triangles in a random graph from $G(n, p)$ is

$$
\begin{gathered}
\mathbb{E}[\# \text { edges }]=\binom{n}{2} \mathbb{P}[i j \text { is an edge }]=p\binom{n}{2} \\
\mathbb{E}[\# \text { of triangles in } G(n, p)]=\binom{n}{3} \mathbb{P}[i j k \text { is a triangle }]=\binom{n}{3} p^{3}
\end{gathered}
$$

Sage can generate random graphs from $G(n, p)$ (graphs.randomGNP (n, p)). For the next part we need a few prerequisites:

1. $1-x \leq e^{-x}$,
2. $\binom{n}{k} \leq n^{k}$,
3. Markov's inequality: if X is a non-negative random variable, $t>0$, then $\mathbb{P}[X>t] \leq \frac{1}{t} \mathbb{E}[X]$.

Theorem 5. For every $k \geq 2$ there is a triangle-free graph with $\chi(G) \geq k$.
Remark: Not only "there is" but "there are many".
Proof. Take $G \in G(n, p)$ where $p=\frac{1}{n^{5 / 6}}$. Let $X=\#$ of triangles in G.
$\mathbb{E}[X]=\binom{n}{3} p^{3} \leq n^{1 / 2}$. By Markov's inequality $\mathbb{P}\left[X>10 n^{1 / 2}\right] \leq \frac{1}{10}$, which means that a typical G has very few triangles.
To show that $\chi(G)$ is "large" we will prove that $\alpha(G)$ is "small". Let $a=\frac{3}{p} \ln n$

$$
\mathbb{P}[\alpha(G) \geq a] \leq\binom{ n}{a} \mathbb{P}[\text { exists independent set of size } a]=\binom{n}{a}(1-p)^{\binom{a}{2}} \leq n^{a} e^{-p\binom{a}{2}} \rightarrow 0, \quad n \rightarrow \infty
$$

where the last limit can be computed by plugging in the formulae for p and a in terms of n.
For sufficiently large n we have $\mathbb{P}[\alpha(G) \geq a]<\frac{1}{10}$. Then

$$
\mathbb{P}[X<10 \sqrt{n} \text { and } \alpha(G)<a] \geq \frac{8}{10}
$$

We showed, with probability $\geq \frac{8}{10}$, a random graph from $G(n, p), p=\frac{1}{n^{5 / 6}}$, has $<10 \sqrt{n}$ triangles, and $\alpha(G)<a<3 n^{5 / 6} \ln n$
Completing the proof:
Take such a random G. Remove at most $10 \sqrt{n}$ vertices so we get a triangle free graph G^{\prime} $\left|V\left(G^{\prime}\right)\right| \geq \frac{n}{2}$ (for large n) and

$$
\chi\left(G^{\prime}\right) \geq \frac{\left|V\left(G^{\prime}\right)\right|}{\alpha\left(G^{\prime}\right)} \geq \frac{n / 2}{3 n^{5 / 6} \ln n}=\frac{1}{6} \frac{n^{1 / 6}}{\ln n} \rightarrow \infty, \quad n \rightarrow \infty
$$

So $\chi\left(G^{\prime}\right)$ can be arbitrarily large

χ of some constructions on graphs

1. Disjoint union $G \sqcup H$. $\chi(G \sqcup H)=\max (\chi(G), \chi(H))$. As $G \subseteq G \sqcup H \supseteq H$, we need at least enough colors to color H, G individually.
2. Wedge $G \vee H$ Graphs joined at a single vertex.

$\chi(G \vee H)=\max (\chi(G), \chi(H)$. After coloring G color H, perhaps permuting the colors so that they agree on the common vertex..
3. The sum (join) $G+H$. It is the disjoint union together with all edges between $V(G)$ and $V(H)$ $\chi(G+H)=\chi(G)+\chi(H)$. As the colors of G must be different from the colors of H.
4. The cartesian product $G \square H$
$V(G \square H)=V(G) \times V(H)$
$\left\{(u, v),\left(u^{\prime}, v^{\prime}\right)\right\}$ is an edge iff $\left(u=u^{\prime}\right.$ and $\left.v v^{\prime} \in E(H)\right)$ or $\left(u u^{\prime} \in E(G)\right.$ and $\left.v=v^{\prime}\right)$.
Lemma 6. $\chi(G \square H)=\max (\chi(G), \chi(H))$
Proof. $G \subseteq G \square H \supseteq H$ so $\chi(G \square H) \geq \max (\chi(G), \chi(H))$. Suppose G and H both have coloring with color set $\{0, . ., k-1\}(k=\max (\chi(G), \chi(H)))$. Le these colorings be

$$
\left.\begin{array}{rl}
f: V(G) & \rightarrow\{0, . ., k-1\} \\
f^{\prime} & : V(H)
\end{array}\right)\{0, . ., k-1\} .
$$

Define $F(u, v)=f(u)+f^{\prime}(v) \bmod k$. We will check that F is a coloring. Let $(u, v)\left(u^{\prime}, v^{\prime}\right) \in$ $E(G \square H)$. Wlog let $u=u^{\prime}$ and $v v^{\prime} \in E(H)$, then:

$$
\begin{aligned}
F(u, v) & =f(u)+f^{\prime}(v) \quad \bmod k \\
F\left(u^{\prime}, v^{\prime}\right) & =f\left(u^{\prime}\right)+f^{\prime}\left(v^{\prime}\right) \quad \bmod k \\
& =f(u)+f^{\prime}\left(v^{\prime}\right) \quad \bmod k \\
& \neq f(u)+f^{\prime}(v) \quad \bmod k \quad \text { because } v v^{\prime} \in E(H) \\
& =F(u, v) .
\end{aligned}
$$

As an exercise, show that $\chi(G) \geq h$ iff $\alpha\left(G \square K_{k}\right) \geq|V(G)|$.

