Graph coloring

Lecture notes, vol. 4

Accuracy of lower bounds, probabilistic method and χ of some constructions

Lecturer: Michal Adamaszek

Scribe: Mathis Isaksen

Accuracy of lower bounds

We know that $\chi(G) \ge \omega(G)$ If $G = C_{2n+1}$, $n \ge 2$ then $\omega(G) = 2$, $\chi(G) = 3$ Q: Is there a graph with $\omega(G) = 2$ and $\chi(G) = 4$? A: Yes the smallest such is the Grötszch graph on 11 vertices G_{11} https://en.wikipedia.org/wiki/Grötzsch_graph

It is not possible to bound $\chi(G)$ in terms of $\omega(G)$.

Theorem 1. For any $k \ge 2$ there is a triangle-free graph with $\chi(G) = k$

Definition 2. Suppose G is a graph with $V(G) = \{v_1, ..., v_n\}$. The Mycielski construction M(G) is a new graph with $V(M(G)) = \{v_1, ..., v_n\} \cup \{u_1, ..., u_n\} \cup \{w\}, \quad E(M(G)) = \{wu_i, i = 1, ..., n\} \cup \{v_i v_j, u_i v_j : v_i v_j \in E(G)\}.$

As an example have that $M(K_2) = C_5$ and $M(C_5) = G_{11}$.

Theorem 3. (restated) If G is triangle-free and $\chi(G) = k$ then M(G) is triangle free and $\chi(M(G)) = k + 1$.

Proof. 1. M(G) is still triangle free

The only possibility is a triangle with 1 vertex from U and 2 vertices from V. However, by the definition of M(G) we then have that $v_i v_j v_k$ is a triangle, contradicting that G was triangle-free.

2. M(G) is k + 1 colorable We can color G with k colors (The set V in the picture). We use another color (k + 1) for all vertices in U, and the last node w is colored with some color different from (k + 1)

3. M(G) is not k-colorable. Suppose otherwise, $c: V(M(G)) \to \{1, .., k\}$. Suppose wlog that w has color k, then U is colored with k-1 colors. (Our goal is to show that we can color G with k-1 colors) Let $A = \{v_i \in V, c(v_i) = k\}$. Recolor A by changing the color of each v_i to $c(u_i)$

$$c'(v_i) = \begin{cases} c(v_i) & \text{if } c(v_i) \neq k \\ c(u_i) & \text{if } c(v_i) = k \end{cases}$$

C' uses only colors $\{1, ..., k-1\}$. Let's check that c' is a coloring of G. Suppose $c'(v_i) = c'(v_j)$

- (a) If both of these $v_i, v_j \notin A$ then $v_i v_j \notin E(G)$
- (b) If $v_i \in A$, $v_j \notin A$. Suppose $v_i v_j \in E(G)$, so that $u_i v_j \in E(M(G))$

Then $c(u_i) = c'(v_i) = c'(v_j) = c(v_j)$ Contradicting that c is a coloring of M(G)(c) If $v_i, v_j \in A$. Then $c(v_i) = c(v_j) = k \Rightarrow v_i v_j \notin E(G)$

Recap: We can have triangle-free graphs with arbitrarily high χ . But is M(G) just a special construction that achieves this? Not really. We will see that in the following:

Probabilistic method

Goal: Prove that objects with an interesting property P exists by showing that a random object has P with non-zero probability. For example: P = "triangle-free and $\chi(G) \ge k$ "

Definition 4. (construction). Fix $V = \{1, ..., n\}$, $0 \le p \le 1$. Construct a graph on V by taking each edge ij, $0 \le i < j \le n$ with probability p, independently for each each pair. G(n, p) is the probability space of all graphs obtained in this way.

A graph $G \in G(n, p)$ has probability

$$\mathbb{P}(G) = p^{|E(G)|} (1-p)^{\binom{n}{2} - |E(G)|}.$$

The expected number of edges/triangles in a random graph from G(n, p) is

$$\mathbb{E}[\#\text{edges}] = \binom{n}{2} \mathbb{P}[ij \text{ is an edge}] = p\binom{n}{2}$$
$$\mathbb{E}[\#\text{of triangles in } G(n,p)] = \binom{n}{3} \mathbb{P}[ijk \text{ is a triangle}] = \binom{n}{3} p^3$$

Sage can generate random graphs from G(n, p) (graphs.randomGNP(n, p)). For the next part we need a few prerequisites:

- 1. $1 x \le e^{-x}$,
- 2. $\binom{n}{k} \leq n^k$,

3. Markov's inequality: if X is a non-negative random variable, t > 0, then $\mathbb{P}[X > t] \leq \frac{1}{t}\mathbb{E}[X]$.

Theorem 5. For every $k \ge 2$ there is a triangle-free graph with $\chi(G) \ge k$.

Remark: Not only "there is" but "there are many".

Proof. Take $G \in G(n,p)$ where $p = \frac{1}{n^{5/6}}$. Let X = # of triangles in G. $\mathbb{E}[X] = \binom{n}{3}p^3 \leq n^{1/2}$. By Markov's inequality $\mathbb{P}[X > 10n^{1/2}] \leq \frac{1}{10}$, which means that a typical G has very few triangles.

To show that $\chi(G)$ is "large" we will prove that $\alpha(G)$ is "small". Let $a = \frac{3}{n} \ln n$

$$\mathbb{P}[\alpha(G) \ge a] \le \binom{n}{a} \mathbb{P}[\text{exists independent set of size } a] = \binom{n}{a} (1-p)^{\binom{a}{2}} \le n^a e^{-p\binom{a}{2}} \to 0, \quad n \to \infty$$

where the last limit can be computed by plugging in the formulae for p and a in terms of n.

For sufficiently large n we have $\mathbb{P}[\alpha(G) \ge a] < \frac{1}{10}$. Then

$$\mathbb{P}[X < 10\sqrt{n} \text{ and } \alpha(G) < a] \ge \frac{8}{10}$$

We showed, with probability $\geq \frac{8}{10}$, a random graph from G(n,p), $p = \frac{1}{n^{5/6}}$, has $< 10\sqrt{n}$ triangles, and $\alpha(G) < a < 3n^{5/6} \ln n$

Completing the proof:

Take such a random G. Remove at most $10\sqrt{n}$ vertices so we get a triangle free graph G' $|V(G')| \geq \frac{n}{2}$ (for large n) and

$$\chi(G') \ge \frac{|V(G')|}{\alpha(G')} \ge \frac{n/2}{3n^{5/6}\ln n} = \frac{1}{6} \frac{n^{1/6}}{\ln n} \to \infty, \quad n \to \infty$$

So $\chi(G')$ can be arbitrarily large

χ of some constructions on graphs

- 1. Disjoint union $G \sqcup H$. $\chi(G \sqcup H) = \max(\chi(G), \chi(H))$. As $G \subseteq G \sqcup H \supseteq H$, we need at least enough colors to color H, G individually.
- 2. Wedge $G \vee H$ Graphs joined at a single vertex.

 $\chi(G \lor H) = \max(\chi(G), \chi(H))$. After coloring G color H, perhaps permuting the colors so that they agree on the common vertex.

- 3. The sum (join) G + H. It is the disjoint union together with all edges between V(G) and V(H) $\chi(G + H) = \chi(G) + \chi(H)$. As the colors of G must be different from the colors of H.
- 4. The cartesian product $G \Box H$ $V(G \Box H) = V(G) \times V(H)$ $\{(u, v), (u', v')\}$ is an edge iff $(u = u' \text{ and } vv' \in E(H))$ or $(uu' \in E(G) \text{ and } v = v')$. Lemma 6. $\chi(G \Box H) = \max(\chi(G), \chi(H))$

Proof. $G \subseteq G \Box H \supseteq H$ so $\chi(G \Box H) \ge \max(\chi(G), \chi(H))$. Suppose G and H both have coloring with color set $\{0, .., k-1\}$ $(k = \max(\chi(G), \chi(H)))$. Le these colorings be

$$f: V(G) \to \{0, .., k-1\},\$$

$$f': V(H) \to \{0, .., k-1\}.$$

Define $F(u, v) = f(u) + f'(v) \mod k$. We will check that F is a coloring. Let $(u, v)(u', v') \in E(G \square H)$. Wlog let u = u' and $vv' \in E(H)$, then:

$$F(u, v) = f(u) + f'(v) \mod k$$

$$F(u', v') = f(u') + f'(v') \mod k$$

$$= f(u) + f'(v') \mod k$$

$$\neq f(u) + f'(v) \mod k \text{ because } vv' \in E(H)$$

$$= F(u, v).$$

As an exercise, show that $\chi(G) \ge h$ iff $\alpha(G \Box K_k) \ge |V(G)|$.