## Graph coloring Lecture notes, vol. 5 Planar Graphs

Lecturer: Michal Adamaszek

Scribe: Sokratis Theodoridis

**Definition 1.** G is planar if it can be drawn on  $\mathbb{R}^2$  (the plane) so that edges intersect only at their common endpoints. We call such a drawing an "embedding" (some authors say "drawing").





**Theorem 3.** (Fáry, 1948) If G has an embedding, then it also has one where every edge is a straight line segment.

**Remark 4.** G can be treated as a topological space  $[(CW-,\Delta-,simplicial-) \text{ complex}]$ . Then G is planar if (as a topological space) it embeds into  $\mathbb{R}^2$  (embedding  $\equiv$  continuous, injective map)



## Observation 6. " $K_5$ is not planar"

Proof. In any planar embedding the cycle 1-2-3-4-5-1 has to be drawn as a polygon: We can draw at most 2 non intersecting diagonals inside this polygon.We can draw at most 2 non intersecting diagonals outside this polygon.But we have to draw 5 diagonals, so that is impossible.

## Observation 7. " $K_{3,3}$ is not planar"

Proof. The 6-cycle has to be drawn as a polygon.We need edges: 15,26,34At most 1 can appear insideAt most 1 can appear outside



Definition 8.

- An edge subdivision is the replacement  $\underbrace{v \quad w \quad v \quad z \quad w}_{\text{where } z \text{ is a new vertex.}}$ 
  - An edge contraction is the indentification of the two endpoints of an edge.
  - *H* is minor of *G* if *H* can be obtained from *G* by removing edges and contracting edges.

**Theorem 9.** The following are equivalent : (a) G is planar

(b) G contains no iterated subdivision of K<sub>5</sub> or K<sub>3,3</sub> as a subgraph (Kuratowski, 1930)

(c) G has no K<sub>5</sub> or K<sub>3,3</sub> as a minor (Wagner, 1937)



**Remark 11.** If G is planar then G has no  $K_5$  or  $K_{3,3}$  subdivision/minor as subgraph

 $(a) \implies (b), (a) \implies (c)$  are easy implications

*Proof.* An embedding of G would contain an embedding of  $K_5$  or  $K_{3,3}$ 

Theorem 12. (The Four-Color Theorem) Every planar graph is 4-colorable.

## Proof history

- 1800-1850 first mentioned
- 1852 a student of De Morgan conjectured 4-colors are sufficient
- Cayley popularized it a lot
- 1879 Alfred Kempe published a proof
- 1880 Tait had another proof
- 1890 Heawood found an error in Kempe's proof (but proved the 5-color theorem), Petersen found an error in Tait's proof
- 1960 Heesh found a method that could give a proof but involved analysing a huge number of cases
- 1976 Appel, Haken analysed these cases with a computer ( $\approx 2000$  cases)
- 1990 Robertson, Seymour and others gave a new computer-assisted proof ( $\approx 600$  cases)

**Definition 13.** A face is any connected component of  $\mathbb{R}^2$  after removing the embedded graph.

**Observation 14.** • *There is exactly one unbounded face.* 

• Each face is an open subset of  $\mathbb{R}^2$ .

**Observation 15.** A graph is planar if and only if it can be embedded in  $S^2$  (the sphere). Suppose G is embedded in  $S^2$ . Pick a point of  $S^2$  not in the embedding. Use the stereographic projection to map G onto  $\mathbb{R}^2$ . Note that in a spherical embedding each face is bounded and homeomorphic to an open disk.



**Example 16.**  $Q_3$  as planar graph.

<u>Notation</u> Suppose I have G with a fixed planar embedding (or spherical embedding) v = # vertices, e = # edges, f = # faces.

**Theorem 17.** (Euler's formula) If G is planar and connected, then for any planar embedding of G:

$$v - e + f = 2.$$

*Proof.* By induction

If f=1 then G has no cycles, as otherwise any cycle of the graph would separate  $\mathbb{R}^2$  into at  $\geq 2$  parts. Hence G is a tree, e = v - 1 and

$$v - e + f = v - (v - 1) + 1 = 2.$$

If  $f \ge 2$  then pick an edge  $xy \in E(G)$  so that on the two sides of xy we have two different faces of the embedding. Now G - xy is planar, connected and it has f(G - xy) = f(G) - 1, e(G - xy) = e(G) - 1, v(G - xy) = v(G). The proof follows by induction. 

Euler cared about regular polyhedra in  $\mathbb{R}^3$ Very quick application: Classification of Platonic solids (regular polytopes).

**Definition 18.** A polytope is regular if:

- 1. All vertices have the same degree  $k \ge 3$ ,
- 2. All faces are polygons with the same number of sides  $l \ge 3$ .

Let it have v vertices, e edges, f faces in the spherical embedding.

We have these equations:  $\begin{cases} v - e + f = 2\\ kv = 2e\\ lf = 2e \end{cases}$ 

and so:

 $\begin{array}{l} e(\frac{2}{k}-1+\frac{2}{l})=2 \implies \frac{2}{k}+\frac{2}{l}=1+\frac{2}{e} \implies \frac{1}{k}+\frac{1}{l}=\frac{1}{2}+\frac{2}{e}>\frac{1}{2}.\\ \text{This can be satisfied only for } (k,l)=(3,3), (3,4), (3,5), (4,3), (5,3). \end{array}$  For each case we uniquely determine v, e, f.

**Corollary 19.** Suppose G has at least three vertices.

(a) If G is planar then  $e \leq 3v - 6$ 

(b) If G is planar and triangle free then  $e \leq 2v - 4$ 

*Proof.* We can assume G is connected. Then v - e + f = 2. Count the edges around each face. Each face has length  $\geq 3$  so we get at least 3f. But each edge is counted twice, so we get exactly 2e. That  $\begin{array}{l} \text{means } 2e \geqslant 3f \text{ or } f \leqslant \frac{2}{3}e. \\ 2 = v - e + f \leqslant v - e + \frac{2}{3}e = v - \frac{1}{3}e \end{array}$ 

 $e \leqslant 3v - 6$ 

If G is triangle-free then we have a stronger inequality  $2e \ge 4f$  and continue the same way.

**Observation 20.** This gives another proof of non-planarity of  $K_{3,3}$  and  $K_5$  $K_5: v = 5, e = 10$   $10 \leq 3 \cdot 5 - 6$  $K_{3,3}$ : is triangle-free, v = 6, e = 9  $9 \nleq 2 \cdot 6 - 4$