Graph coloring
 Lecture notes, vol. 5
 Planar Graphs

Definition 1. G is planar if it can be drawn on \mathbb{R}^{2} (the plane) so that edges intersect only at their common endpoints. We call such a drawing an "embedding"(some authors say "drawing").

Example 2.

embedding (K_{4} is planar)

straight line-embedding
Theorem 3. (Fáry,1948) If G has an embedding, then it also has one where every edge is a straight line segment.
Remark 4. G can be treated as a topological space [($C W-, \Delta-$,simplicial-) complex]. Then G is planar if (as a topological space) it embeds into \mathbb{R}^{2} (embedding \equiv continuous, injective map)

Example 5.

Observation 6. " K_{5} is not planar"

Proof. In any planar embedding the cycle 1-2-3-4-5-1 has to be drawn as a polygon:
We can draw at most 2 non intersecting diagonals inside this polygon.
We can draw at most 2 non intersecting diagonals outside this polygon.
But we have to draw 5 diagonals, so that is impossible.
Observation 7. " $K_{3,3}$ is not planar"
Proof. The 6-cycle has to be drawn as a polygon.
We need edges: $15,26,34$
At most 1 can appear inside
At most 1 can appear outside

Definition 8. • An edge subdivision is the replacement $v \quad w_{\bullet}^{v} \quad \underset{\bullet}{w}$ where z is a new vertex.

- An edge contraction is the indentification of the two endpoints of an edge.
- H is minor of G if H can be obtained from G by removing edges and contracting edges.

Theorem 9. The following are equivalent : (a) G is planar
(b) G contains no iterated subdivision of K_{5} or $K_{3,3}$ as a subgraph (Kuratowski,1930)
(c) G has no K_{5} or $K_{3,3}$ as a minor (Wagner,1937)

Example 10.

$G=$ Petersen graph

Remark 11. If G is planar then G has no K_{5} or $K_{3,3}$ subdivision/minor as subgraph $(a) \Longrightarrow(b),(a) \Longrightarrow(c)$ are easy implications

Proof. An embedding of G would contain an embedding of K_{5} or $K_{3,3}$

Theorem 12. (The Four-Color Theorem) Every planar graph is 4-colorable.

Proof history

- 1800-1850 first mentioned
- 1852 a student of De Morgan conjectured 4-colors are sufficient
- Cayley popularized it a lot
- 1879 Alfred Kempe published a proof
- 1880 Tait had another proof
- 1890 Heawood found an error in Kempe's proof (but proved the 5-color theorem), Petersen found an error in Tait's proof
- 1960 Heesh found a method that could give a proof but involved analysing a huge number of cases
- 1976 Appel, Haken analysed these cases with a computer (≈ 2000 cases)
- 1990 Robertson, Seymour and others gave a new computer-assisted proof (≈ 600 cases)

Definition 13. A face is any connected component of \mathbb{R}^{2} after removing the embedded graph.
Observation 14. - There is exactly one unbounded face.

- Each face is an open subset of \mathbb{R}^{2}.

Observation 15. A graph is planar if and only if it can be embedded in S^{2} (the sphere). Suppose G is embedded in S^{2}. Pick a point of S^{2} not in the embedding. Use the stereographic projection to map G onto \mathbb{R}^{2}. Note that in a spherical embedding each face is bounded and homeomorphic to an open disk.

Example 16. Q_{3} as planar graph.

Notation Suppose I have G with a fixed planar embedding (or spherical embedding) $v=\#$ vertices, $e=\#$ edges, $f=\#$ faces.

Theorem 17. (Euler's formula) If G is planar and connected, then for any planar embedding of G :

$$
v-e+f=2
$$

Proof. By induction

If $f=1$ then G has no cycles, as otherwise any cycle of the graph would seperate \mathbb{R}^{2} into at ≥ 2 parts.
Hence G is a tree, $e=v-1$ and

$$
v-e+f=v-(v-1)+1=2
$$

If $f \geqslant 2$ then pick an edge $x y \in E(G)$ so that on the two sides of $x y$ we have two different faces of the embedding. Now $G-x y$ is planar, connected and it has $f(G-x y)=f(G)-1, e(G-x y)=e(G)-1$, $v(G-x y)=v(G)$. The proof follows by induction.

Euler cared about regular polyhedra in \mathbb{R}^{3}
Very quick application: Classification of Platonic solids (regular polytopes).
Definition 18. A polytope is regular if:

1. All vertices have the same degree $k \geqslant 3$,
2. All faces are polygons with the same number of sides $l \geqslant 3$.

Let it have v vertices, e edges, f faces in the spherical embedding.
We have these equations: $\left\{\begin{array}{l}v-e+f=2 \\ k v=2 e \\ l f=2 e\end{array}\right.$
and so:
$e\left(\frac{2}{k}-1+\frac{2}{l}\right)=2 \Longrightarrow \frac{2}{k}+\frac{2}{l}=1+\frac{2}{e} \Longrightarrow \frac{1}{k}+\frac{1}{l}=\frac{1}{2}+\frac{2}{e}>\frac{1}{2}$.
This can be satisfied only for $(k, l)=(3,3),(3,4),(3,5),(4,3),(5,3)$. For each case we uniquely determine v, e, f.

Corollary 19. Suppose G has at least three vertices.
(a) If G is planar then $e \leqslant 3 v-6$
(b) If G is planar and triangle free then $e \leqslant 2 v-4$

Proof. We can assume G is connected. Then $v-e+f=2$. Count the edges around each face. Each face has length $\geqslant 3$ so we get at least $3 f$. But each edge is counted twice, so we get exactly $2 e$. That means $2 e \geqslant 3 f$ or $f \leqslant \frac{2}{3} e$.
$2=v-e+f \leqslant v-e+\frac{2}{3} e=v-\frac{1}{3} e$
$e \leqslant 3 v-6$
If G is triangle-free then we have a stronger inequality $2 e \geqslant 4 f$ and continue the same way.
Observation 20. This gives another proof of non-planarity of $K_{3,3}$ and K_{5}
$K_{5}: v=5, e=10 \quad 10 \not \leq 3 \cdot 5-6$
$K_{3,3}$: is triangle-free, $v=6, e=9 \quad 9 \not \leq 2 \cdot 6-4$

