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Definition 1. G is planar if it can be drawn on IR2(the plane) so that edges intersect only at their
common endpoints. We call such a drawing an ”embedding”(some authors say ”drawing”).

Example 2. K4 not an embedding embedding (K4 is planar)

straight line-embedding

Theorem 3. (Fáry,1948) If G has an embedding, then it also has one where every edge is a straight line
segment.

Remark 4. G can be treated as a topological space [(CW−,∆−,simplicial-) complex]. Then G is planar
if (as a topological space) it embeds into IR2 (embedding ≡ continuous, injective map)

Example 5. K3,3

21

5 3

4 K5

Observation 6. ”K5 is not planar”

Proof. In any planar embedding the cycle 1-2-3-4-5-1 has to be drawn as a polygon:
We can draw at most 2 non intersecting diagonals inside this polygon.
We can draw at most 2 non intersecting diagonals outside this polygon.
But we have to draw 5 diagonals, so that is impossible.

Observation 7. ”K3,3 is not planar”

Proof. The 6-cycle has to be drawn as a polygon.
We need edges: 15,26,34
At most 1 can appear inside
At most 1 can appear outside
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Definition 8. • An edge subdivision is the replacement
v w v z w

where z is a new vertex.

• An edge contraction is the indentification of the two endpoints of an edge.

• H is minor of G if H can be obtained from G by removing edges and contracting edges.



Theorem 9. The following are equivalent : (a) G is planar

(b) G contains no iterated subdivision of K5 or K3,3 as a subgraph
(Kuratowski,1930)

(c) G has no K5 or K3,3 as a minor
(Wagner,1937)

Example 10. G=Petersen graph K5 minor

Remark 11. If G is planar then G has no K5 or K3,3 subdivision/minor as subgraph

(a) =⇒ (b) , (a) =⇒ (c) are easy implications

Proof. An embedding of G would contain an embedding of K5 or K3,3

Theorem 12. (The Four-Color Theorem) Every planar graph is 4-colorable.

Proof history

• 1800-1850 first mentioned

• 1852 a student of De Morgan conjectured 4-colors are sufficient

• Cayley popularized it a lot

• 1879 Alfred Kempe published a proof

• 1880 Tait had another proof

• 1890 Heawood found an error in Kempe’s proof (but proved the 5-color theorem), Petersen found
an error in Tait’s proof

• 1960 Heesh found a method that could give a proof but involved analysing a huge number of cases

• 1976 Appel, Haken analysed these cases with a computer (≈ 2000 cases)

• 1990 Robertson, Seymour and others gave a new computer-assisted proof (≈ 600 cases)

Definition 13. A face is any connected component of IR2 after removing the embedded graph.

Observation 14. • There is exactly one unbounded face.

• Each face is an open subset of IR2.

Observation 15. A graph is planar if and only if it can be embedded in S2 (the sphere). Suppose G is
embedded in S2.Pick a point of S2 not in the embedding. Use the stereographic projection to map G onto
IR2. Note that in a spherical embedding each face is bounded and homeomorphic to an open disk.
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Example 16. Q3 as planar graph.

Notation Suppose I have G with a fixed planar embedding (or spherical embedding)
v= # vertices, e= # edges, f= # faces.

Theorem 17. (Euler’s formula) If G is planar and connected, then for any planar embedding of G :

v − e + f = 2.

Proof. By induction
If f=1 then G has no cycles, as otherwise any cycle of the graph would seperate IR2 into at ≥ 2 parts.
Hence G is a tree, e = v − 1 and

v − e + f = v − (v − 1) + 1 = 2.

If f > 2 then pick an edge xy ∈ E(G) so that on the two sides of xy we have two different faces of the
embedding. Now G − xy is planar, connected and it has f(G − xy)=f(G) − 1, e(G − xy)=e(G) − 1,
v(G− xy)=v(G). The proof follows by induction.

Euler cared about regular polyhedra in IR3

Very quick application: Classification of Platonic solids (regular polytopes).

Definition 18. A polytope is regular if:

1. All vertices have the same degree k > 3,

2. All faces are polygons with the same number of sides l > 3.

Let it have v vertices, e edges, f faces in the spherical embedding.

We have these equations:


v − e + f = 2

kv = 2e

lf = 2e
and so:
e( 2

k − 1 + 2
l ) = 2 =⇒ 2

k + 2
l = 1 + 2

e =⇒ 1
k + 1

l = 1
2 + 2

e>
1
2 .

This can be satisfied only for (k, l) = (3, 3), (3, 4), (3, 5), (4, 3), (5, 3). For each case we uniquely
determine v, e, f .

Corollary 19. Suppose G has at least three vertices.

(a) If G is planar then e 6 3v − 6

(b) If G is planar and triangle free then e 6 2v − 4

Proof. We can assume G is connected. Then v − e + f = 2. Count the edges around each face. Each
face has length > 3 so we get at least 3f . But each edge is counted twice, so we get exactly 2e. That
means 2e > 3f or f 6 2

3e.
2 = v − e + f 6 v − e + 2

3e = v − 1
3e

e 6 3v − 6
If G is triangle-free then we have a stronger inequality 2e > 4f and continue the same way.

Observation 20. This gives another proof of non-planarity of K3,3 and K5

K5: v = 5, e = 10 10 � 3 · 5− 6
K3,3: is triangle-free, v = 6, e = 9 9 � 2 · 6− 4
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