Graph coloring

Lecture notes, vol. 6, Lists, triangulation and the art gallery problem

Theorem 1 (5-color theorem). If G is planar then $\chi(G) \leq 5$.
Proof. Later: "Proof from the book" (Aigner, Zeigler)
List coloring, examples:
1 A graph $G(V, E)$ with
$-\mathrm{V}=$ courses
$-\mathrm{E}=$ conflicts (student in both courses)
can be subject to a list-coloring should there restrictions to for instance the choices of days that a course can be held at.

2 Soduku \equiv coloring of 9×9 grid with restrictions in the form of already given numbers.
As a definition:
Definition 2. Let G be any graph, for every vertex $x \in V(G)$ we have a set of colors $L(x)$ (of colors available to x).

A L-coloring of G is a coloring $c: V(G) \rightarrow \bigcup_{x} L(x)$ such that $c(x) \in L(x)$ for all x.
The list-chromatic number $\chi_{\ell}(G)$ is the smallest k s.t. G has a L-coloring for any choice of list satisfying $|L(x)| \geq k$.
G is k-list-colorable (k-choosable) when $\chi_{\ell}(G) \leq k$.
Example 3. Here are some various examples and facts:

- $L(x)=\{1, \ldots, k\}$ for all $x \in V(G)$ then L-coloring $\equiv k$-coloring in the normal sense
- $\chi(G) \leq \chi_{\ell}(G)$
- Example with $\chi(G)<\chi_{\ell}(G)$:

For each $x,|L(x)|=2$. But for these list there are no L-coloring. Therefore $\chi_{\ell}(G) \geq 3$, while $\chi(G)=2$ since the graph is bipartite.

- $\chi_{\ell}(G) \leq \Delta G+1$, same proof as the non-list chromatic number.
- Brooks Theorem holds.

Question: Can we construct G with small $\chi(G)$ and large $\chi_{\ell}(G)$?
Proposition 4. For every $k \geq 2$ there exist a graph with $\chi(G)=2$ and $\chi_{\ell}(G)>k$

Proof. Take $A=B=\binom{\{1, \ldots, 2 k-1\}}{k}$, (the set of all k-subsets of $\{1, \ldots, 2 k-1\}$).
Let $G=K_{A, B}$ be the complete bipartite graph with parts A and B.
Example 5. Take $k=3,|A|=|B|=\binom{5}{3}=10$
That is A and B will consist of 10 vertices each with a list of three numbers made of the various permutations of $[1,2,3,4,5]$ and every vertex in A is connected to every vertex in B. So $|V|=20,|E|=$ 100.
(proof cont.) For $X \in A$ or $X \in B$ set $L(X)=X$ and note $|L(X)|=k$. We claim that $K_{A, B}$ has no L-coloring.

Suppose c is an L-coloring. Then $c(A) \subseteq\{1, \ldots, 2 k-1\},|c(A)| \geq k$. \leftarrow will be true, or otherwise $|c(A)| \leq k-1$ and then there is a $X \subseteq\{1, \ldots, 2 k-1\}$ such that $|X|=k$ and $X \cap c(A)=\emptyset$. Then X cannot be colored with a color from $L(X)$.

Similar for B, that is $c(B) \subseteq\{1, \ldots, 2 k-1\},|c(B)| \geq k$.
It follows that $c(A) \cap c(B) \neq \emptyset$ so two vertices on opposite sides have the same color. That means $\chi_{\ell}\left(K_{A, B}\right) \geq k+1$, but $\chi\left(K_{A, B}\right)=2$.

Theorem 6. (Thomassen 1994)
Every planar graph satisfies $\chi_{\ell}(G) \leq 5$. (It is 5 -list-colorable).
Remark 7. This is stronger than the 5 -color theorem, because $\chi(G) \leq \chi_{\ell}(G)$.
Definition 8. An embedding of a planar graph G is called:

- A triangulation if every face is a triangle (also the unbounded one)
- A near-triangulation if every bounded face is a triangle and the unbounded one is a cycle.

Example 9. Various examples of Definition 8.

From left to right: A triangulation, a near triangulation and the final picture is neither.
Remark 10. Every embedding can be extended to a triangulation on the same vertex set. (By only adding edges)

Proof. Add diagonals as needed. It also work for the unbounded face.
In other words: For any planar G there is a triangulation H such that

$$
V(G)=V(H), \quad E(G) \subseteq E(H)
$$

In particular

$$
\begin{aligned}
\chi(G) & \leq \chi(H) \\
\chi_{\ell}(G) & \leq \chi_{\ell}(H)
\end{aligned}
$$

Proposition 11. Suppose G is near-triangular with outer cycle $\mathbb{O}=x_{1}, \ldots, x_{k}$ and assume the following exist:

- $L\left(x_{1}\right)=\{a\}, L\left(x_{2}\right)=\{b\}, a \neq b$
- $\left|L\left(x_{i}\right)\right| \geq 3$ for all $i=3, \ldots, k-1$
- $|L(y)| \geq 5$ for all $y \notin \mathbb{O}$.

Then G is L-colorable.
Remark 12. This proposition implies Thomassens theorem as follows:
Take H, any planar graph, with lists L and $|L(x)| \geq 5$. Extend H to a triangulation $H \subseteq G$ (in particular, G is a near-triangulation). Choose any x_{1}, x_{2} on the outer face. Restrict $L\left(x_{1}\right)$ and $L\left(x_{2}\right)$ to one element and voila! \rightarrow the proposition applies to G.
L-coloring of G gives an L-coloring for H.
Proof. Proof of proposition 11:

- $|V(G)|=3$:

Then we will have a spare color for x_{3}.
Case 1:
There is an edge $x_{k} x_{j}, j=2, \ldots, k-2$

$G_{1}=$ graph bounded by $x_{1} x_{2} \ldots x_{j} x_{k} \rightarrow L$-color G_{1} by induction.
$G_{2}=$ graph bounded by $x_{k} x_{j} \ldots x_{k-1} \rightarrow L$-color G_{2} by induction.
\rightarrow L-coloring of G. Note that after coloring G_{1} some colors are not available for certain vertices of G_{2}, but there is enough left just to use the induction hypothesis for G_{2}.

Case 2:
There are no edge $x_{k} x_{j}, j=2, \ldots, k-2$.

- Around x_{k} we must have a sequence of triangles, since the interior is triangulated.
- Let $N\left(X_{k}\right)=\left\{x_{1}, x_{k-1}, y_{1}, \ldots, y_{\ell}\right\}$
- Pick $c, d \in L\left(X_{k}\right), c \neq d, c, d \neq a$.
- Set $G^{\prime}=G-x_{k}$ and note that G^{\prime} is a near-triangulation.

Consider the list:

$$
L^{\prime}\left(y_{i}\right)=L\left(y_{i}\right) \backslash\{c, d\}, L^{\prime}(x)=L(x) \text { for any other } x \in G^{\prime}
$$

\rightsquigarrow There is a L^{\prime}-coloring of G^{\prime} by induction.

$$
c\left(y_{i}\right) \notin\{c, d\}, c\left(x_{1}\right) \notin\{c, d\}
$$

\rightsquigarrow color x_{k} with either c or d depending on $c\left(x_{k-1}\right)$.
Remark 13. There are planar not-4-list-colorable graphs. (Voigt ' 93 example with ≈ 300 vertices).
Remark 14. Did not use Euler, upper/lower bounds. Only geometric properties.

Application: The art gallery problem

Suppose P is a polygon in \mathbb{R}^{2} with n vertices.
Example 15. :

We assume the bounded region is the floor plan af an art gallery.
How many guards are needed to guard each point in sight?
Problem 16. - Find a gallery with 6 vertices requiring ≥ 2 guards.

- Find a gallery with as few vertices as possible requiring $\geq k$ guards.

Observation 17. There are n-vertex galleries requiring at least $\left\lfloor\frac{n}{3}\right\rfloor$ guards.

Theorem 18. Rephrasing the art gallery problem:
Every n-vertex gallery can be guarded by $\left\lfloor\frac{n}{3}\right\rfloor$ guards. (≈ 70 's Chvatal).
Definition 19. A planar embedding is called a polygon triangulation if it is a near-triangulation and all vertices lie on the outer cycle.

Example 20. "Polygon triangulated by diagonals"

Observation 21. A triangulated polygon with n vertices has $2 n-3$ edges, n on the outer cycle and $n-3$ diagonals.

Observation 22. Every triangulated polygon have a vertex of degree 2.
Proof. The shortest diagonal cuts off such a vertex.
Observation 23. Every triangulated polygon is 3-colorable.
Proof. Take v to be a vertex of degree 2. $G-v$ is a triangulated polygon. Color $G-v$ with 3 colors, the neighbours of v will use 2 colors. Color v with the spare color.

Proof. Proof of Theorem 18:

- Let G be planar polygon with n vertices.
- First triangulate using diagonals (Exercise: show that this is always possible).
- The resulting triangular polygon is 3-colorable.
- Some color class will have $\leq\left\lfloor\frac{n}{3}\right\rfloor$ elements
- Place guards at the vertices of that color.

