Graph coloring Lecture notes, vol. 6, Lists, triangulation and the art gallery problem

Lecturer: Michal Adamaszek

Scribe: Kristoffer Nielsen

Theorem 1 (5-color theorem). If G is planar then $\chi(G) \leq 5$.

Proof. Later: "Proof from the book" (Aigner, Zeigler).

List coloring, examples:

1 A graph G(V, E) with

- V = courses

- E = conflicts (student in both courses)

can be subject to a list-coloring should there restrictions to for instance the choices of days that a course can be held at.

2 Soduku \equiv coloring of 9 \times 9 grid with restrictions in the form of already given numbers.

As a definition:

Definition 2. Let G be any graph, for every vertex $x \in V(G)$ we have a set of colors L(x) (of colors available to x).

A L-coloring of G is a coloring $c: V(G) \to \bigcup_{x} L(x)$ such that $c(x) \in L(x)$ for all x.

The list-chromatic number $\chi_{\ell}(G)$ is the smallest k s.t. G has a L-coloring for any choice of list satisfying $|L(x)| \geq k$.

G is k-list-colorable (k-choosable) when $\chi_{\ell}(G) \leq k$.

Example 3. Here are some various examples and facts:

- $L(x) = \{1, \ldots, k\}$ for all $x \in V(G)$ then L-coloring $\equiv k$ -coloring in the normal sense
- $\chi(G) \le \chi_{\ell}(G)$
- Example with $\chi(G) < \chi_{\ell}(G)$:

For each x, |L(x)| = 2. But for these list there are no L-coloring. Therefore $\chi_{\ell}(G) \ge 3$, while $\chi(G) = 2$ since the graph is bipartite.

- $\chi_{\ell}(G) \leq \Delta G + 1$, same proof as the non-list chromatic number.
- Brooks Theorem holds.

Question: Can we construct G with small $\chi(G)$ and large $\chi_{\ell}(G)$?

Proposition 4. For every $k \ge 2$ there exist a graph with $\chi(G) = 2$ and $\chi_{\ell}(G) > k$

Proof. Take $A = B = \binom{\{1, \dots, 2k-1\}}{k}$, (the set of all k-subsets of $\{1, \dots, 2k-1\}$). Let $G = K_{A,B}$ be the complete bipartite graph with parts A and B.

Example 5. Take $k = 3, |A| = |B| = {5 \choose 3} = 10$

That is A and B will consist of 10 vertices each with a list of three numbers made of the various permutations of [1, 2, 3, 4, 5] and every vertex in A is connected to every vertex in B. So |V| = 20, |E| = 100.

(proof cont.) For $X \in A$ or $X \in B$ set L(X) = X and note |L(X)| = k. We claim that $K_{A,B}$ has no *L*-coloring.

Suppose c is an L-coloring. Then $c(A) \subseteq \{1, \ldots, 2k-1\}, |c(A)| \geq k$. \leftarrow will be true, or otherwise $|c(A)| \leq k-1$ and then there is a $X \subseteq \{1, \ldots, 2k-1\}$ such that |X| = k and $X \cap c(A) = \emptyset$. Then X cannot be colored with a color from L(X).

Similar for B, that is $c(B) \subseteq \{1, \ldots, 2k - 1\}, |c(B)| \ge k$.

It follows that $c(A) \cap c(B) \neq \emptyset$ so two vertices on opposite sides have the same color. That means $\chi_{\ell}(K_{A,B}) \geq k+1$, but $\chi(K_{A,B}) = 2$.

Theorem 6. (Thomassen 1994)

Every planar graph satisfies $\chi_{\ell}(G) \leq 5$. (It is 5-list-colorable).

Remark 7. This is stronger than the 5-color theorem, because $\chi(G) \leq \chi_{\ell}(G)$.

Definition 8. An embedding of a planar graph G is called:

- A triangulation if every face is a triangle (also the unbounded one)
- A near-triangulation if every bounded face is a triangle and the unbounded one is a cycle.

Example 9. Various examples of Definition 8.

From left to right: A triangulation, a near triangulation and the final picture is neither.

Remark 10. Every embedding can be extended to a triangulation on the same vertex set. (By only adding edges)

Proof. Add diagonals as needed. It also work for the unbounded face.

In other words: For any planar G there is a triangulation H such that

$$V(G) = V(H), \ E(G) \subseteq E(H).$$

In particular

$$\chi(G) \le \chi(H)$$

$$\chi_{\ell}(G) \le \chi_{\ell}(H)$$

Proposition 11. Suppose G is near-triangular with outer cycle $\mathbb{O} = x_1, \ldots, x_k$ and assume the following exist:

- $L(x_1) = \{a\}, L(x_2) = \{b\}, a \neq b$
- $|L(x_i)| \ge 3$ for all i = 3, ..., k 1

• $|L(y)| \ge 5$ for all $y \notin \mathbb{O}$.

Then G is L-colorable.

Remark 12. This proposition implies Thomassens theorem as follows:

Take H, any planar graph, with lists L and $|L(x)| \ge 5$. Extend H to a triangulation $H \subseteq G$ (in particular, G is a near-triangulation). Choose any x_1, x_2 on the outer face. Restrict $L(x_1)$ and $L(x_2)$ to one element and voila! \rightarrow the proposition applies to G.

L-coloring of G gives an L-coloring for H.

Proof. Proof of proposition 11:

• |V(G)| = 3:

Then we will have a spare color for x_3 .

 $\underline{\text{Case } 1}$:

There is an edge $x_k x_j$, $j = 2, \ldots, k-2$

 $G_1 =$ graph bounded by $x_1 x_2 \dots x_j x_k \to L$ -color G_1 by induction.

 $G_2 =$ graph bounded by $x_k x_j \dots x_{k-1} \rightarrow L$ -color G_2 by induction.

 \rightarrow L-coloring of G. Note that after coloring G_1 some colors are not available for certain vertices of G_2 , but there is enough left just to use the induction hypothesis for G_2 .

Case 2:

There are no edge $x_k x_j$, $j = 2, \ldots, k - 2$.

• Around x_k we must have a sequence of triangles, since the interior is triangulated.

- Let $N(X_k) = \{x_1, x_{k-1}, y_1, \dots, y_\ell\}$
- Pick $c, d \in L(X_k), c \neq d, c, d \neq a$.
- Set $G' = G x_k$ and note that G' is a near-triangulation.

Consider the list:

 $L'(y_i) = L(y_i) \backslash \{c,d\}$, L'(x) = L(x) for any other $x \in G'$

 \leadsto There is a L'-coloring of G' by induction.

$$c(y_i) \notin \{c,d\}$$
, $c(x_1) \notin \{c,d\}$

 \rightsquigarrow color x_k with either c or d depending on $c(x_{k-1})$.

Remark 13. There are planar not-4-list-colorable graphs. (Voigt '93 example with ≈ 300 vertices).

Remark 14. Did not use Euler, upper/lower bounds. Only geometric properties.

Application: The art gallery problem

Suppose P is a polygon in \mathbb{R}^2 with n vertices.

Example 15. :

We assume the bounded region is the floor plan af an art gallery.

How many guards are needed to guard each point in sight?

Problem 16. • Find a gallery with 6 vertices requiring ≥ 2 guards.

• Find a gallery with as few vertices as possible requiring $\geq k$ guards.

Observation 17. There are n-vertex galleries requiring at least $\lfloor \frac{n}{3} \rfloor$ guards.

Theorem 18. Rephrasing the art gallery problem: Every n-vertex gallery can be guarded by $\lfloor \frac{n}{3} \rfloor$ guards. (\approx 70's Chvatal).

Definition 19. A planar embedding is called a polygon triangulation if it is a near-triangulation and all vertices lie on the outer cycle.

Example 20. "Polygon triangulated by diagonals"

Observation 21. A triangulated polygon with n vertices has 2n-3 edges, n on the outer cycle and n-3 diagonals.

Observation 22. Every triangulated polygon have a vertex of degree 2.

Proof. The shortest diagonal cuts off such a vertex.

Observation 23. Every triangulated polygon is 3-colorable.

Proof. Take v to be a vertex of degree 2. G - v is a triangulated polygon. Color G - v with 3 colors, the neighbours of v will use 2 colors. Color v with the spare color.

Proof. Proof of Theorem 18:

- Let G be planar polygon with n vertices.
- First triangulate using diagonals (Exercise: show that this is always possible).
- The resulting triangular polygon is 3-colorable.
- Some color class will have $\leq \left|\frac{n}{3}\right|$ elements
- Place guards at the vertices of that color.