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Theorem 1 (5-color theorem). If G is planar then χ(G) ≤ 5.

Proof. Later: ”Proof from the book” (Aigner, Zeigler).

List coloring, examples:

1 A graph G(V,E) with

– V = courses

– E = conflicts (student in both courses)

can be subject to a list-coloring should there restrictions to for instance the choices of days that a
course can be held at.

2 Soduku ≡ coloring of 9× 9 grid with restrictions in the form of already given numbers.

As a definition:

Definition 2. Let G be any graph, for every vertex x ∈ V (G) we have a set of colors L(x) ( of colors
available to x).

A L-coloring of G is a coloring c : V (G)→
⋃
x
L(x) such that c(x) ∈ L(x) for all x.

The list-chromatic number χ`(G) is the smallest k s.t. G has a L-coloring for any choice of list
satisfying |L(x)| ≥ k.

G is k-list-colorable (k-choosable) when χ`(G) ≤ k.

Example 3. Here are some various examples and facts:

• L(x) = {1, . . . , k} for all x ∈ V (G) then L-coloring ≡ k-coloring in the normal sense

• χ(G) ≤ χ`(G)

• Example with χ(G) < χ`(G):

2, 3 1, 2 1, 3

1, 3 1, 2 2, 3

For each x, |L(x)| = 2. But for these list there are no L-coloring. Therefore χ`(G) ≥ 3, while
χ(G) = 2 since the graph is bipartite.

• χ`(G) ≤ ∆G+ 1, same proof as the non-list chromatic number.

• Brooks Theorem holds.

Question: Can we construct G with small χ(G) and large χ`(G)?

Proposition 4. For every k ≥ 2 there exist a graph with χ(G) = 2 and χ`(G) > k



Proof. Take A = B =
({1,...,2k−1}

k

)
, (the set of all k-subsets of {1, . . . , 2k − 1}).

Let G = KA,B be the complete bipartite graph with parts A and B.

Example 5. Take k = 3, |A| = |B| =
(
5
3

)
= 10

That is A and B will consist of 10 vertices each with a list of three numbers made of the various
permutations of [1, 2, 3, 4, 5] and every vertex in A is connected to every vertex in B. So |V | = 20, |E| =
100.

(proof cont.) For X ∈ A or X ∈ B set L(X) = X and note |L(X)| = k. We claim that KA,B has no
L-coloring.

Suppose c is an L-coloring. Then c(A) ⊆ {1, . . . , 2k − 1}, |c(A)| ≥ k. ← will be true, or otherwise
|c(A)| ≤ k − 1 and then there is a X ⊆ {1, . . . , 2k − 1} such that |X| = k and X ∩ c(A) = ∅. Then X
cannot be colored with a color from L(X).

Similar for B, that is c(B) ⊆ {1, . . . , 2k − 1}, |c(B)| ≥ k.
It follows that c(A) ∩ c(B) 6= ∅ so two vertices on opposite sides have the same color. That means

χ`(KA,B) ≥ k + 1, but χ(KA,B) = 2.

Theorem 6. (Thomassen 1994)
Every planar graph satisfies χ`(G) ≤ 5. (It is 5-list-colorable).

Remark 7. This is stronger than the 5-color theorem, because χ(G) ≤ χ`(G).

Definition 8. An embedding of a planar graph G is called:

• A triangulation if every face is a triangle (also the unbounded one)

• A near-triangulation if every bounded face is a triangle and the unbounded one is a cycle.

Example 9. Various examples of Definition 8.

From left to right: A triangulation, a near triangulation and the final picture is neither.

Remark 10. Every embedding can be extended to a triangulation on the same vertex set. (By only
adding edges)

Proof. Add diagonals as needed. It also work for the unbounded face.

In other words: For any planar G there is a triangulation H such that

V (G) = V (H), E(G) ⊆ E(H).

In particular

χ(G) ≤ χ(H)

χ`(G) ≤ χ`(H)

Proposition 11. Suppose G is near-triangular with outer cycle O = x1, . . . , xk and assume the following
exist:

• L(x1) = {a}, L(x2) = {b}, a 6= b

• |L(xi)| ≥ 3 for all i = 3, . . . , k − 1
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• |L(y)| ≥ 5 for all y /∈ O.

Then G is L-colorable.

Remark 12. This proposition implies Thomassens theorem as follows:
Take H, any planar graph, with lists L and |L(x)| ≥ 5. Extend H to a triangulation H ⊆ G (in

particular, G is a near-triangulation). Choose any x1, x2 on the outer face. Restrict L(x1) and L(x2) to
one element and voila! → the proposition applies to G.

L-coloring of G gives an L-coloring for H.

Proof. Proof of proposition 11:

• |V (G)| = 3:

x1a

x2b

x3 ≥ 3

Then we will have a spare color for x3.

Case 1:
There is an edge xkxj , j = 2, . . . , k − 2

G1 = graph bounded by x1x2 . . . xjxk → L-color G1 by induction.

G2 = graph bounded by xkxj . . . xk−1 → L-color G2 by induction.

→ L-coloring of G. Note that after coloring G1 some colors are not available for certain vertices of
G2, but there is enough left just to use the induction hypothesis for G2.

Case 2:
There are no edge xkxj , j = 2, . . . , k − 2.

• Around xk we must have a sequence of triangles, since the interior is triangulated.
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• Let N(Xk) = {x1, xk−1, y1, . . . , y`}

• Pick c, d ∈ L(Xk), c 6= d, c, d 6= a.

• Set G′ = G− xk and note that G′ is a near-triangulation.

Consider the list:

L′(yi) = L(yi)\{c, d} , L′(x) = L(x) for any other x ∈ G′

 There is a L’-coloring of G′ by induction.

c(yi) /∈ {c, d} , c(x1) /∈ {c, d}

 color xk with either c or d depending on c(xk−1).

Remark 13. There are planar not-4-list-colorable graphs. (Voigt ’93 example with ≈ 300 vertices).

Remark 14. Did not use Euler, upper/lower bounds. Only geometric properties.

Application: The art gallery problem

Suppose P is a polygon in R2 with n vertices.

Example 15. :

We assume the bounded region is the floor plan af an art gallery.

How many guards are needed to guard each point in sight?

Problem 16. • Find a gallery with 6 vertices requiring ≥ 2 guards.

• Find a gallery with as few vertices as possible requiring ≥ k guards.

Observation 17. There are n-vertex galleries requiring at least
⌊
n
3

⌋
guards.
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Theorem 18. Rephrasing the art gallery problem:
Every n-vertex gallery can be guarded by

⌊
n
3

⌋
guards. (≈ 70’s Chvatal).

Definition 19. A planar embedding is called a polygon triangulation if it is a near-triangulation and
all vertices lie on the outer cycle.

Example 20. ”Polygon triangulated by diagonals”

Observation 21. A triangulated polygon with n vertices has 2n−3 edges, n on the outer cycle and n−3
diagonals.

Observation 22. Every triangulated polygon have a vertex of degree 2.

Proof. The shortest diagonal cuts off such a vertex.

Observation 23. Every triangulated polygon is 3-colorable.

Proof. Take v to be a vertex of degree 2. G − v is a triangulated polygon. Color G − v with 3 colors,
the neighbours of v will use 2 colors. Color v with the spare color.

Proof. Proof of Theorem 18:

• Let G be planar polygon with n vertices.

• First triangulate using diagonals (Exercise: show that this is always possible).

• The resulting triangular polygon is 3-colorable.

• Some color class will have ≤
⌊
n
3

⌋
elements

• Place guards at the vertices of that color.
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