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Further on planar graphs. In the 1930s Birkhoff and Whitney had the idea to, instead of constructing
one 4-colouring for a planar graph, rather count all 4-colourings, and determine whether the result is
> 0. This leads to the notion of the chromatic polynomial.

Definition 1. For a graph G we define the chromatic function Pg(t), P(G,t) or P(t), as

P (t) = # of vertex colourings of G with colours {1,...,t}
={c:V(G) = {1,...,t} : ¢ is a colouring}|

Example 2. o G=K,, Pg(t)=1t".
o G=K,, Pa(t)=t{t—1)---(t — (n—1)).
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Notation 3. tZ is the n’th falling factorial of t. Pg(k) =0 whenk=1,...,n— 1.

o G=P,, Pg(t)=t(t—1)""L

o G=10, Pa(t) =1.

o We find a complication with cycles. G = Cj5
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Our computation doesn’t keep track of whether 1 and 4 are coloured differently.
o x(G) =min{k € N: Pz(k) > 0}, and
o The 4-colour theorem = Pg(4) > 0 for a planar graph G.
Lemma 4. If G is a tree, then
Pg(t) =t(t—1)"!
where n = |V(G)].

Proof. If G is a single vertex, then Pg(t) =t =t(t — 1)1 7. Pick a leaf z € V(G)
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Po(t) = Po—o(t)(t = 1) = t(t = 1)" (¢ — 1) = t(t - 1)"
by induction. O
Lemma 5. For the disjoint union of graphs G, H, P(G U H,t) = P(G,t)P(H,t)
Proof. Any pair (colouring of G, colouring of H) gives a colouring of G' LI H. O
The chromatic function is indeed the chromatic polynomial.

Proposition 6. For a graph G # 0, let m;(G) be the number of ways to partition V(QG) into exactly i
non-empty independent sets. Then

n

Pot) =Y m(@F . n=|V(G)

i=0
Proof. The choice of a colouring with colours from {1,...,¢} is the same as
o partitioning into i independent sets: m;(G) ways to do this.

o colouring each part with a different colour: ¢(t —1)---(t — (i — 1)) = t* ways.

And we do thisfor 1 <i<n O
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Example 7. Let G = Ps. o
7T1:0
T =1 1-2-1
T3 =1 1-2-3
71'24:0

Then
Pp,(t) = mot2 + mst2 = t(t — 1) +t(t — 1)(t — 2) = t(t — 1)?
Remark 8. Hence from now on we call Ps(t) the chromatic polynomial.

Proposition 9. G = (V, E) is a graph. If G # (), then
Po(t) = 3 (-1t

FCE
where c(F') is the number of connected components of (V, F).
Before the proof we remind ourselves of the Inclusion-Exclusion principle.
Fact 10. Suppose A is a set, and Ay, ..., A are subsets of A. For any X C {1,...,k} define
Ax =) A
1¢

Then




Example 11. Assume we have some ambient set A, with A, B,C C A.

Then we have

[AUBUC|=|A|+|B|+|C|—|AnB|—|BNC|—|CNA|+]|AnBNC|

|JAUBUC|=|A|—|A|—|B|—-|C|+|ANB|+|BNC|+|ANC|—-|ANnBNC|

Proof of proposition 9. Define A = {g : V — {1,...,¢}} - all functions, not just colourings. For every
e=xy € B, let Ac ={g€ A:g(x) =g(y)}. Now for F C E, let Ap =[).cp Ac. Clearly [Ap| = o)
because g € Ap must be constant on every component of (V, F). But then we’re done, as
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Notation 12. If P(t) is a polynomial, we write [t*|P(t) for the coefficient of t* in P(t).
Lemma 13. If G is a graph with n vertices and m edges, then Pg(t) is a polynomial of degree n, with
(t"Pe(t)=1 ,  [t"Pa(t) = -m

Proof. By proposition 9, we have ¢(F) < n = deg Pg < n. Now then ¢(F) = n iff. F' = (), which implies
t" appears exactly once in Pg(t) with coefficient (—1)I%/ =1,
c(F)=n—1iff. F = {e}, which implies t"~! appears with coefficient (—1)~'m = —m. d

Notation 14. For e € E(G) we write: G — e for G with e removed, and G /e for G with e contracted.
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Proposition 15. (Deletion-contraction rule). If e € E(G), then

Pg(t) = Pa—c(t) — Pgye(t)




Proof. Let e = zy € E(QG).
Pg_(t) = # colourings with c(z) # c(y) + # colourings with c¢(z) = ¢(y)
= Pa(t) + Fge(t)
O
Remark 16. |[E(G —e)| = |E(G)|—1 and |V (G/e)| = |V(G)| — 1, so we could define Pg(t) recursively

tV (@l if G has no edges

Pg(t) =
Pa_e(t) — Pgje(t) ife€ E(G)

Example 17. G is a graph on 5 vertices, and we run the above.

t—1

=t(t—1)% = 2t(t — 1)2(t — 2)(t — 2) + t(t — 1)(t — 2)
Example 18. P(C,,t) = P(P,,t) — P(Cn_1,t). We have

P(P,,t) =t(t—1)"!

P(Cy,2) =14 (=1)? = { 2, 2|n

Proposition 19. Let G # 0 be a graph with n vertices, m edges and ¢ connected components. The
coefficients of Pg(t) alternate in signs, i.e.

Pa(t) = Y (~1)ie (@)

=0

where ¢;(G) > 0. Moreover ¢;(G) =0 fori>n —c and ch—c(G) # 0.



Simply put:
Po(t) =t" —mt" !t 4 cp(G)" 2 — -+ (=1)" " Ce,_o(G)tE

the last term ¢¢ is with ¢ to the power of the number of connected components. Exercise: do a proof by
induction.

Proof. Deleting keeps the sign, and contracting changes the sign.

Every branch of the deletion-contraction tree ends with some K;, 1 <i<n. Every branch ending with
K; contributes

(71)n7iti

because the path from G to K; contains n — i contractions, i.e. n— i sign changes. The proposition holds
with

¢i(G) = # of branches ending with K;

and clearly ¢;(G) > 0.

To prove that ¢;(G) = 0 for ¢ > n — ¢ note no branch of the tree ends with with a graph on less than
¢ vertices. Moreover, there is at least one branch with ends exactly with K. (apply contractions all the
time), S0 ¢,,—.(G) > 0. O



