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Further on planar graphs. In the 1930s Birkhoff and Whitney had the idea to, instead of constructing
one 4-colouring for a planar graph, rather count all 4-colourings, and determine whether the result is
> 0. This leads to the notion of the chromatic polynomial.

Definition 1. For a graph G we define the chromatic function PG(t), P (G, t) or P (t), as

PG(t) = # of vertex colourings of G with colours {1, . . . , t}
= |{c : V (G)→ {1, . . . , t} : c is a colouring}|

Example 2. ◦ G = Kn, PG(t) = tn.

◦ G = Kn, PG(t) = t(t− 1) · · · (t− (n− 1)).
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t t− 1

Notation 3. tn is the n’th falling factorial of t. PG(k) = 0 when k = 1, . . . , n− 1.

◦ G = Pn, PG(t) = t(t− 1)n−1.

t

t− 1

t− 1

t− 1

◦ G = ∅, PG(t) = 1.

◦ We find a complication with cycles. G = C5
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Our computation doesn’t keep track of whether 1 and 4 are coloured differently.

◦ χ(G) = min{k ∈ N : PG(k) > 0}, and

◦ The 4-colour theorem ≡ PG(4) > 0 for a planar graph G.

Lemma 4. If G is a tree, then

PG(t) = t(t− 1)n−1

where n = |V (G)|.

Proof. If G is a single vertex, then PG(t) = t = t(t− 1)1−1. Pick a leaf x ∈ V (G)



x

PG(t) = PG−x(t)(t− 1) = t(t− 1)n−2(t− 1) = t(t− 1)n−1

by induction.

Lemma 5. For the disjoint union of graphs G,H, P (G tH, t) = P (G, t)P (H, t)

Proof. Any pair (colouring of G, colouring of H) gives a colouring of G tH.

The chromatic function is indeed the chromatic polynomial.

Proposition 6. For a graph G 6= ∅, let πi(G) be the number of ways to partition V (G) into exactly i
non-empty independent sets. Then

PG(t) =

n∑
i=0

πi(G)ti , n = |V (G)|

Proof. The choice of a colouring with colours from {1, . . . , t} is the same as

◦ partitioning into i independent sets: πi(G) ways to do this.

◦ colouring each part with a different colour: t(t− 1) · · · (t− (i− 1)) = ti ways.

And we do this for 1 ≤ i ≤ n

Example 7. Let G = P3.
1 2 3

π1 = 0

π2 = 1 , 1− 2− 1

π3 = 1 , 1− 2− 3

π≥4 = 0

Then

PP3
(t) = π2t

2 + π3t
3 = t(t− 1) + t(t− 1)(t− 2) = t(t− 1)2

Remark 8. Hence from now on we call PG(t) the chromatic polynomial.

Proposition 9. G = (V,E) is a graph. If G 6= ∅, then

PG(t) =
∑
F⊆E

(−1)|F |tc(F )

where c(F ) is the number of connected components of (V, F ).

Before the proof we remind ourselves of the Inclusion-Exclusion principle.

Fact 10. Suppose A is a set, and A1, . . . , Ak are subsets of A. For any X ⊆ {1, . . . , k} define

AX =
⋂
i∈X

Ai

Then ∣∣∣∣∣∣
k⋃

i=1

Ai

∣∣∣∣∣∣ =
∑

X⊆{1,...,k}

(−1)|X||AX |
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Example 11. Assume we have some ambient set A, with A,B,C ⊂ A.

A

B

C

Then we have

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩A|+ |A ∩B ∩ C|

|A ∪B ∪ C| = |A| − |A| − |B| − |C|+ |A ∩B|+ |B ∩ C|+ |A ∩ C| − |A ∩B ∩ C|

Proof of proposition 9. Define A = {g : V → {1, . . . , t}} - all functions, not just colourings. For every
e = xy ∈ E, let Ae = {g ∈ A : g(x) = g(y)}. Now for F ⊆ E, let AF =

⋂
e∈F Ae. Clearly |AF | = tc(F ),

because g ∈ AF must be constant on every component of (V, F ). But then we’re done, as

PG(t) =

∣∣∣∣∣⋃
e∈E

Ae

∣∣∣∣∣ Incl.−excl.=
∑
F⊆E

(−1)|F ||AF |

Notation 12. If P (t) is a polynomial, we write [tk]P (t) for the coefficient of tk in P (t).

Lemma 13. If G is a graph with n vertices and m edges, then PG(t) is a polynomial of degree n, with

[tn]PG(t) = 1 , [tn−1]PG(t) = −m

Proof. By proposition 9, we have c(F ) ≤ n⇒ degPG ≤ n. Now then c(F ) = n iff. F = ∅, which implies
tn appears exactly once in PG(t) with coefficient (−1)|∅| = 1.
c(F ) = n− 1 iff. F = {e}, which implies tn−1 appears with coefficient (−1)−1m = −m.

Notation 14. For e ∈ E(G) we write: G− e for G with e removed, and G/e for G with e contracted.

x
−→

y

←−G
e

z
G/e

Proposition 15. (Deletion-contraction rule). If e ∈ E(G), then

PG(t) = PG−e(t)− PG/e(t)
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Proof. Let e = xy ∈ E(G).

PG−e(t) = # colourings with c(x) 6= c(y) + # colourings with c(x) = c(y)

= PG(t) + PG/e(t)

Remark 16. |E(G− e)| = |E(G)| − 1 and |V (G/e)| = |V (G)| − 1, so we could define PG(t) recursively

PG(t) =

 t|V (G)| if G has no edges

PG−e(t)− PG/e(t) if e ∈ E(G)

Example 17. G is a graph on 5 vertices, and we run the above.

= −

= − − +

Now arrange the graphs accordingly s.t.

t− 1 t− 1

t− 2

t− 1

t

= −
t− 1

t− 2

t− 1

t

2× + t− 2

t− 1

t

= t(t− 1)3 − 2t(t− 1)2(t− 2)(t− 2) + t(t− 1)(t− 2)

Example 18. P (Cn, t) = P (Pn, t)− P (Cn−1, t). We have

P (Pn, t) = t(t− 1)n−1

P (C3, t) = t(t− 1)(t− 2)

By induction P (Cn) = (t− 1)n + (−1)n(t− 1). We can check that P (Cn, 2) 6= 0 iff. 2|n.

P (Cn, 2) = 1 + (−1)2 =

{
2, 2 | n
0, 2 - n

Proposition 19. Let G 6= ∅ be a graph with n vertices, m edges and c connected components. The
coefficients of PG(t) alternate in signs, i.e.

PG(t) =

n∑
i=0

(−1)ici(G)tn−i

where ci(G) ≥ 0. Moreover ci(G) = 0 for i > n− c and cn−c(G) 6= 0.
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Simply put:

PG(t) = tn −mtn−1 + c2(G)tn−2 − · · ·+ (−1)n−ccn−c(G)tc

the last term tc is with t to the power of the number of connected components. Exercise: do a proof by
induction.

Proof. Deleting keeps the sign, and contracting changes the sign.

G

G′ G′′

G− e

·1

G/e

·(−1)

G− e

·1

G/e

·(−1)

G− e

·1

G/e

·(−1)

Ki Kj

Every branch of the deletion-contraction tree ends with some Ki, 1 ≤ i ≤ n. Every branch ending with
Ki contributes

(−1)n−iti

because the path from G to Ki contains n− i contractions, i.e. n− i sign changes. The proposition holds
with

ci(G) = # of branches ending with Ki

and clearly ci(G) ≥ 0.
To prove that ci(G) = 0 for i > n− c note no branch of the tree ends with with a graph on less than

c vertices. Moreover, there is at least one branch with ends exactly with Kc (apply contractions all the
time), so cn−c(G) > 0.
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