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In the next pages, G is always a graph, V (G) its set of vertices and E(G) its set of edges.

Lemma 1. Let G,G1, G2 be graphs such that G = G1 ∪G2 and G1 ∩G2 ' Kk for some k > 0. Then

PG(t) =
1

tk
PG1

(t)PG2
(t).

G1 G2

Kk

Proof. Colour G1 and colour G2. Since G1 ∩G2 ' Kk, G1 ∩G2 uses k different colours. It means that
the colourings of G1 and G2 agree in 1

PKk
(t) fraction of pairs.

Application 2. 1. G = G1 tG2 (k = 0), then

PG(t) = PG1
(t)PG2

(t),

2. v is a leaf in G (k = 1), then

PG(t) =
1

t
PK2

(t)PG−v(t) =
1

t
t(t− 1)PG−v(t) = (t− 1)PG−v(t),

G

v

3. G = K2�Pn = C4 ∪K2�Pn−1 (k = 2), then

PG(t) =
1

t(t− 1)
PC4(t)PK2�Pn−1

(t),

and we can use this method recursively.

C4 K2�Pn−1

· · ·

· · ·



Summary. G is a graph with chromatic polynomial PG(t).

• n = |V (G)| = deg(PG),

• m = |E(G)| = −[tn−1]PG(t),

• The number of connected components is = max{c : tc | PG(t)},

• χ(G) = 1 +max{k : (t− k) | PG(t)} = 1 +max{k : tk | PG(t)},

• The number of triangles is =
(
m
2

)
− [tn−2]PG(t) (will be proved during the next exercise session),

• The coefficients of the polynomial are integers with alternating signs.

Remark 3. It is hard to computer PG(t), otherwise we could easily compute χ(G). It is also hard to
recognize chromatic polynomials.

Theorem 4. (June Huh, 2010) Suppose G is connected with chromatic polynomial

PG(t) = tn − c1tn−1 + c2t
n−2 − · · ·+ (−1)n−1cn−1t.

Then the sequence (1, c1, c2, . . . , cn−1) is log-concave, which means

ci−1ci+1 6 c
2
i for all i.

In particular, it is unimodal, which means

1 6 c1 6 c2 6 · · · 6 ck−1 6 ck > ck+1 > · · · > cn−1, for some k.

Proof. This theorem proves a conjecture of Read from 1968. We will not prove the theorem (the proof
involves algebraic geometry and singularity theory).

Exercise 5. 1. Why the name log-concave?

2. Prove that a log-concave sequence of positive real numbers is unimodal.

Remark 6. We can prove 1 6 c1 6 c2 6 · · · 6 cb 12 (n−1)c.
If G is a tree, then

PG(t) = t(t− 1)n−1 =

n−1∑
i=0

(
n− 1

i

)
(−1)itn−i · t = tn −

(
n− 1

1

)
tn−1 +

(
n− 1

2

)
tn−2 − · · · .

The sequence (1, c1, c2, . . . ) is (1,
(
n−1
1

)
,
(
n−1
2

)
, · · · ), and it is increasing up to the middle term.

Now suppose that G is connected, but not a tree. Then, by definition of a tree, there is an edge e ∈ E(G)
such that G− e is still connected. For i 6 1

2 (n− 1) we notice that

PG(t) = PG−e(t)− PG/e(t) =⇒ ci−1(G) = ci−1(G− e)− (−ci−2(G/e)) = ci−1(G− e) + ci−2(G/e).

We know i 6 1
2 (n− 1) and i− 1 6 1

2 (n− 2) = 1
2 (|V (G/e)| − 1), hence by induction

ci−1(G) 6 ci(G− e) + ci−1(G/e) = ci(G)

which ends the induction step.

Question. What else does the chromatic polynomial count? And how?

Definition 7. An orientation of G is a choice of direction for every edge. This gives a directed graph.
If G has m edges, then it has 2m possible orientations (which might also be isomorphic).

Definition 8. An orientation is acyclic if it has no closed directed walk. Let a(G) be the number of
acyclic orientations of G.

Theorem 9. (Stanley, 1973) If G has n vertices, then a(G) = (−1)nPG(−1).
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Example 10. • G is a tree with n vertices, then

a(G) = 2n−1 = (−1)n(−1)(−1− 1)n−1 = (−1)nPG(−1),

• G is a cycle on n vertices, then

a(G) = 2n − 2,

(−1)nPG(−1) = (−1)n[(−2)n + (−1)n(−2)] = (−1)n[(−1)n(2n − 2)] = a(G),

• G = Kn, then

(−1)nPG(−1) = (−1)n(−1)n = (−1)n(−1)(−1− 1)(−1− 2) · · · (−1− (n− 1)) = (−1)n(−1)nn!.

An acyclic orientation is the same as ordering the vertices v1, v2, . . . , vn (there are n! possibilities
to do this) and then choosing the orientation

vi −→ vj , whenever i > j.

Proof. Take e = xy ∈ E(G). Write a+(G−e), a−(G−e), a0(G−e) for the number of acyclic orientations
of G− e such that:

• There is a directed walk in G− e from x to y (a+),

• There is a directed walk in G− e from y to x (a−),

• There is no directed walk either way (a0).

Claim. a(G− e) = a+(G− e) + a−(G− e) + a0(G− e).

Proof. An acyclic orientation in G− e cannot have directed walks x −→ y and y −→ x at the same time.
These three sets are therefore disjoint and they give all the possibilities.

Claim. a(G/e) = a0(G− e).

Proof. Take an orientation of G−e with no walk x −→ y or y −→ x. For any z ∈ NG−e(x)∩NG−e(y), the
edges xz and yz have the same orientation (if not, there would be a walk x −→ z −→ y or y −→ z −→ x),
hence either

x −→ z and y −→ z

or
z −→ x and z −→ y.

The orientation of G − e determines then an orientation of G/e (the edges xz and yz are compatible
under the contraction). This orientation is also acyclic (a directed walk from xy to itself would imply a
directed walk in G− e from x or y to y or x). This also works vice versa.
The idea here was that

Closed walks in G/e = Walks x −→ y or y −→ x in G− e.

Claim. a(G) = a+(G− e) + a−(G− e) + 2a0(G− e).

Proof. For the first two terms there is only one way to extend the orientation of G − e without closing
a cycle in G. In the last case the edge xy can be oriented both ways, since we don’t have a walk from x
to y or from y to x.
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By these three claims we obtain

a(G) = a+(G− e) + a−(G− e) + 2a0(G− e) =

= a+(G− e) + a−(G− e) + a0(G− e) + a0(G− e) =

= a(G− e) + a0(G− e) =

= a(G− e) + a(G/e)

We complete the proof by using induction:

• G = K1, then a(G) = 1 = (−1)1PK1
(−1),

• Pick an edge e ∈ E(G), then (by induction assumption)

a(G) = a(G− e) + a(G/e) =

= (−1)nPG−e(−1) + (−1)n−1PG/e(−1) =

= (−1)n[PG−e(−1)− PG/e(−1)] =

= (−1)nPG(−1)

Definition 11. α ∈ C is a chromatic root if PG(α) = 0 for some graph G.

Observation 12. 1. Every natural number is a chromatic root,

2. For any G different from the empty graph, PG(0) = 0,

3. For any G with at least one edge, PG(1) = 0,

4. If α is a chromatic root, then so is α+ 1,

Proof. We proved in the exercise session that PG+K1
(α+ 1) = (α+ 1)PG(α),

5. The set of chromatic roots is countable (it is a subset of the algebraic numbers).

Proposition 13. There is no chromatic root in (−∞, 0) ∪ (0, 1).

Proof. α < 0 is not a root of PG(t), since the coefficients of the polynomial have alternating signs.

Take α ∈ (0, 1). Because PGtH(t) = PG(t)PH(t), it suffices to prove that PG(α) 6= 0 for any con-
nected graph. Apply the deletion-contraction rule to G, in such a way that all the intermediate graphs
are connected. At each step, either G is a tree (and we stop splitting) or there is an edge e ∈ E(G) such
that G− e is still connected.

A branch of this splitting process with i contractions

• ends with an (n− i)-vertex tree,

• introduces a sign of (−1)i,

• contributes t(t− 1)n−i−1 to PG(t).

Define di as the number of branches ending with an (n− i)-vertex tree, then

PG(t) =
∑

di(−1)it(t− 1)n−i−1,

and of course we have di > 0. Evaluate PG(α) for α ∈ (0, 1):

sgn{di(−1)iα(α− 1)n−i−1} = (−1)i · 1 · (−1)n−i−1 = (−1)n−1,

which means that all monomials in PG(α) evaluate to positive or all evaluate to negative, hence PG(α) 6= 0
as di > 0 for at least one i.
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Remark 14. We used the deletion-contraction principle, but only until we reached trees (since we
already know their chromatic polynomial).

Theorem 15. (Jackson, Thomassen) There are no chromatic roots in (−∞, 0)∪(0, 1)∪(1, 3227 ). Moreover,
the constant 32

27 is optimal.

Theorem 16. (Sokal) The chromatic roots are dense in C.

Theorem 17. (Birkhoff, Lewis) If G is planar, then PG(t) > 0 for all t ∈ [5,∞).

Remark 18. Moreover, it is conjectured that if G is planar, then PG(t) > 0 for all t ∈ [4,∞).
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