Graph coloring Lecture notes, vol. 8 Chromatic polynomials, orientations, chromatic roots

Lecturer: Michal Adamaszek

Scribe: Giorgia L. G. Cassis

In the next pages, G is always a graph, V(G) its set of vertices and E(G) its set of edges.

Lemma 1. Let G, G_1, G_2 be graphs such that $G = G_1 \cup G_2$ and $G_1 \cap G_2 \simeq K_k$ for some $k \ge 0$. Then

$$P_G(t) = \frac{1}{t^{\underline{k}}} P_{G_1}(t) P_{G_2}(t).$$

Proof. Colour G_1 and colour G_2 . Since $G_1 \cap G_2 \simeq K_k$, $G_1 \cap G_2$ uses k different colours. It means that the colourings of G_1 and G_2 agree in $\frac{1}{P_{K_k}(t)}$ fraction of pairs.

Application 2. 1. $G = G_1 \sqcup G_2$ (k = 0), then

$$P_G(t) = P_{G_1}(t)P_{G_2}(t),$$

2. v is a leaf in G (k = 1), then

$$P_G(t) = \frac{1}{t} P_{K_2}(t) P_{G-v}(t) = \frac{1}{t} t(t-1) P_{G-v}(t) = (t-1) P_{G-v}(t),$$

3. $G = K_2 \Box P_n = C_4 \cup K_2 \Box P_{n-1}$ (k = 2), then

$$P_G(t) = \frac{1}{t(t-1)} P_{C_4}(t) P_{K_2 \square P_{n-1}}(t),$$

and we can use this method recursively.

Summary. G is a graph with chromatic polynomial $P_G(t)$.

- $n = |V(G)| = deg(P_G),$
- $m = |E(G)| = -[t^{n-1}]P_G(t),$
- The number of connected components is $= max\{c: t^c \mid P_G(t)\},\$
- $\chi(G) = 1 + max\{k : (t-k) \mid P_G(t)\} = 1 + max\{k : t^{\underline{k}} \mid P_G(t)\},\$
- The number of triangles is $\binom{m}{2} [t^{n-2}]P_G(t)$ (will be proved during the next exercise session),
- The coefficients of the polynomial are integers with alternating signs.

Remark 3. It is hard to computer $P_G(t)$, otherwise we could easily compute $\chi(G)$. It is also hard to recognize chromatic polynomials.

Theorem 4. (June Huh, 2010) Suppose G is connected with chromatic polynomial

$$P_G(t) = t^n - c_1 t^{n-1} + c_2 t^{n-2} - \dots + (-1)^{n-1} c_{n-1} t.$$

Then the sequence $(1, c_1, c_2, \ldots, c_{n-1})$ is log-concave, which means

$$c_{i-1}c_{i+1} \leq c_i^2$$
 for all *i*.

In particular, it is unimodal, which means

$$1 \leq c_1 \leq c_2 \leq \cdots \leq c_{k-1} \leq c_k \geq c_{k+1} \geq \cdots \geq c_{n-1}, \text{ for some } k.$$

Proof. This theorem proves a conjecture of Read from 1968. We will not prove the theorem (the proof involves algebraic geometry and singularity theory). \Box

Exercise 5. 1. Why the name *log-concave*?

2. Prove that a log-concave sequence of positive real numbers is unimodal.

Remark 6. We can prove $1 \leq c_1 \leq c_2 \leq \cdots \leq c_{\lfloor \frac{1}{2}(n-1) \rfloor}$. If G is a tree, then

$$P_G(t) = t(t-1)^{n-1} = \sum_{i=0}^{n-1} \binom{n-1}{i} (-1)^i t^{n-i} \cdot t = t^n - \binom{n-1}{1} t^{n-1} + \binom{n-1}{2} t^{n-2} - \cdots$$

The sequence $(1, c_1, c_2, ...)$ is $(1, \binom{n-1}{1}, \binom{n-1}{2}, ...)$, and it is increasing up to the middle term. Now suppose that G is connected, but not a tree. Then, by definition of a tree, there is an edge $e \in E(G)$ such that G - e is still connected. For $i \leq \frac{1}{2}(n-1)$ we notice that

$$P_G(t) = P_{G-e}(t) - P_{G/e}(t) \Longrightarrow c_{i-1}(G) = c_{i-1}(G-e) - (-c_{i-2}(G/e)) = c_{i-1}(G-e) + c_{i-2}(G/e).$$

We know $i \leq \frac{1}{2}(n-1)$ and $i-1 \leq \frac{1}{2}(n-2) = \frac{1}{2}(|V(G/e)|-1)$, hence by induction

$$c_{i-1}(G) \leq c_i(G-e) + c_{i-1}(G/e) = c_i(G)$$

which ends the induction step.

Question. What else does the chromatic polynomial count? And how?

Definition 7. An orientation of G is a choice of direction for every edge. This gives a directed graph. If G has m edges, then it has 2^m possible orientations (which might also be isomorphic).

Definition 8. An orientation is acyclic if it has no closed directed walk. Let a(G) be the number of acyclic orientations of G.

Theorem 9. (Stanley, 1973) If G has n vertices, then $a(G) = (-1)^n P_G(-1)$.

Example 10. • *G* is a tree with *n* vertices, then

$$a(G) = 2^{n-1} = (-1)^n (-1)(-1-1)^{n-1} = (-1)^n P_G(-1),$$

• G is a cycle on n vertices, then

$$a(G) = 2^{n} - 2,$$

(-1)ⁿP_G(-1) = (-1)ⁿ[(-2)ⁿ + (-1)ⁿ(-2)] = (-1)ⁿ[(-1)ⁿ(2^{n} - 2)] = a(G),

• $G = K_n$, then

$$(-1)^{n}P_{G}(-1) = (-1)^{n}(-1)^{\underline{n}} = (-1)^{n}(-1)(-1-1)(-1-2)\cdots(-1-(n-1)) = (-1)^{n}(-1)^{n}n!.$$

An acyclic orientation is the same as ordering the vertices v_1, v_2, \ldots, v_n (there are n! possibilities to do this) and then choosing the orientation

$$v_i \longrightarrow v_j$$
, whenever $i > j$.

Proof. Take $e = xy \in E(G)$. Write $a^+(G-e)$, $a^-(G-e)$, $a^0(G-e)$ for the number of acyclic orientations of G - e such that:

- There is a directed walk in G e from x to $y(a^+)$,
- There is a directed walk in G e from y to x (a^{-}) ,
- There is no directed walk either way (a^0) .

Claim.
$$a(G-e) = a^+(G-e) + a^-(G-e) + a^0(G-e).$$

Proof. An acyclic orientation in G - e cannot have directed walks $x \longrightarrow y$ and $y \longrightarrow x$ at the same time. These three sets are therefore disjoint and they give all the possibilities.

Claim.
$$a(G/e) = a^0(G - e)$$
.

Proof. Take an orientation of G-e with no walk $x \to y$ or $y \to x$. For any $z \in N_{G-e}(x) \cap N_{G-e}(y)$, the edges xz and yz have the same orientation (if not, there would be a walk $x \to z \to y$ or $y \to z \to x$), hence either

$$x \longrightarrow z \text{ and } y \longrightarrow z$$

 $z \longrightarrow x \text{ and } z \longrightarrow y.$

or

The orientation of G - e determines then an orientation of G/e (the edges xz and yz are compatible under the contraction). This orientation is also acyclic (a directed walk from xy to itself would imply a directed walk in G - e from x or y to y or x). This also works vice versa. The idea here was that

Closed walks in
$$G/e$$
 = Walks $x \longrightarrow y$ or $y \longrightarrow x$ in $G - e$.
Claim. $a(G) = a^+(G - e) + a^-(G - e) + 2a^0(G - e)$.

Proof. For the first two terms there is only one way to extend the orientation of G - e without closing a cycle in G. In the last case the edge xy can be oriented both ways, since we don't have a walk from x to y or from y to x.

By these three claims we obtain

$$a(G) = a^{+}(G - e) + a^{-}(G - e) + 2a^{0}(G - e) =$$

= $a^{+}(G - e) + a^{-}(G - e) + a^{0}(G - e) + a^{0}(G - e) =$
= $a(G - e) + a^{0}(G - e) =$
= $a(G - e) + a(G/e)$

We complete the proof by using induction:

- $G = K_1$, then $a(G) = 1 = (-1)^1 P_{K_1}(-1)$,
- Pick an edge $e \in E(G)$, then (by induction assumption)

$$a(G) = a(G - e) + a(G/e) =$$

= $(-1)^n P_{G-e}(-1) + (-1)^{n-1} P_{G/e}(-1) =$
= $(-1)^n [P_{G-e}(-1) - P_{G/e}(-1)] =$
= $(-1)^n P_G(-1)$

Definition 11. $\alpha \in \mathbb{C}$ is a chromatic root if $P_G(\alpha) = 0$ for some graph G.

Observation 12. 1. Every natural number is a chromatic root,

- 2. For any G different from the empty graph, $P_G(0) = 0$,
- 3. For any G with at least one edge, $P_G(1) = 0$,
- 4. If α is a chromatic root, then so is $\alpha + 1$,

Proof. We proved in the exercise session that $P_{G+K_1}(\alpha+1) = (\alpha+1)P_G(\alpha)$,

5. The set of chromatic roots is countable (it is a subset of the algebraic numbers).

Proposition 13. There is no chromatic root in $(-\infty, 0) \cup (0, 1)$.

Proof. $\alpha < 0$ is not a root of $P_G(t)$, since the coefficients of the polynomial have alternating signs.

Take $\alpha \in (0,1)$. Because $P_{G \sqcup H}(t) = P_G(t)P_H(t)$, it suffices to prove that $P_G(\alpha) \neq 0$ for any connected graph. Apply the deletion-contraction rule to G, in such a way that all the intermediate graphs are connected. At each step, either G is a tree (and we stop splitting) or there is an edge $e \in E(G)$ such that G - e is still connected.

A branch of this splitting process with i contractions

- ends with an (n-i)-vertex tree,
- introduces a sign of $(-1)^i$,
- contributes $t(t-1)^{n-i-1}$ to $P_G(t)$.

Define d_i as the number of branches ending with an (n-i)-vertex tree, then

$$P_G(t) = \sum d_i (-1)^i t(t-1)^{n-i-1},$$

and of course we have $d_i \ge 0$. Evaluate $P_G(\alpha)$ for $\alpha \in (0, 1)$:

$$sgn\{d_i(-1)^i\alpha(\alpha-1)^{n-i-1}\} = (-1)^i \cdot 1 \cdot (-1)^{n-i-1} = (-1)^{n-1},$$

which means that all monomials in $P_G(\alpha)$ evaluate to positive or all evaluate to negative, hence $P_G(\alpha) \neq 0$ as $d_i > 0$ for at least one *i*.

Remark 14. We used the deletion-contraction principle, but only until we reached trees (since we already know their chromatic polynomial).

Theorem 15. (Jackson, Thomassen) There are no chromatic roots in $(-\infty, 0) \cup (0, 1) \cup (1, \frac{32}{27})$. Moreover, the constant $\frac{32}{27}$ is optimal.

Theorem 16. (Sokal) The chromatic roots are dense in \mathbb{C} .

Theorem 17. (Birkhoff, Lewis) If G is planar, then $P_G(t) > 0$ for all $t \in [5, \infty)$.

Remark 18. Moreover, it is conjectured that if G is planar, then $P_G(t) > 0$ for all $t \in [4, \infty)$.