Graph coloring
 Lecture notes, vol. 8
 Chromatic polynomials, orientations, chromatic roots

Lecturer: Michal Adamaszek
Scribe: Giorgia L. G. Cassis

In the next pages, G is always a graph, $V(G)$ its set of vertices and $E(G)$ its set of edges.
Lemma 1. Let G, G_{1}, G_{2} be graphs such that $G=G_{1} \cup G_{2}$ and $G_{1} \cap G_{2} \simeq K_{k}$ for some $k \geqslant 0$. Then

$$
P_{G}(t)=\frac{1}{t \underline{k}} P_{G_{1}}(t) P_{G_{2}}(t) .
$$

Proof. Colour G_{1} and colour G_{2}. Since $G_{1} \cap G_{2} \simeq K_{k}, G_{1} \cap G_{2}$ uses k different colours. It means that the colourings of G_{1} and G_{2} agree in $\frac{1}{P_{K_{k}}(t)}$ fraction of pairs.

Application 2. 1. $G=G_{1} \sqcup G_{2}(k=0)$, then

$$
P_{G}(t)=P_{G_{1}}(t) P_{G_{2}}(t),
$$

2. v is a leaf in $G(k=1)$, then

$$
P_{G}(t)=\frac{1}{t} P_{K_{2}}(t) P_{G-v}(t)=\frac{1}{t} t(t-1) P_{G-v}(t)=(t-1) P_{G-v}(t),
$$

3. $G=K_{2} \square P_{n}=C_{4} \cup K_{2} \square P_{n-1}(k=2)$, then

$$
P_{G}(t)=\frac{1}{t(t-1)} P_{C_{4}}(t) P_{K_{2} \square P_{n-1}}(t),
$$

and we can use this method recursively.

Summary. G is a graph with chromatic polynomial $P_{G}(t)$.

- $n=|V(G)|=\operatorname{deg}\left(P_{G}\right)$,
- $m=|E(G)|=-\left[t^{n-1}\right] P_{G}(t)$,
- The number of connected components is $=\max \left\{c: t^{c} \mid P_{G}(t)\right\}$,
- $\chi(G)=1+\max \left\{k:(t-k) \mid P_{G}(t)\right\}=1+\max \left\{k: t^{\underline{k}} \mid P_{G}(t)\right\}$,
- The number of triangles is $=\binom{m}{2}-\left[t^{n-2}\right] P_{G}(t)$ (will be proved during the next exercise session),
- The coefficients of the polynomial are integers with alternating signs.

Remark 3. It is hard to computer $P_{G}(t)$, otherwise we could easily compute $\chi(G)$. It is also hard to recognize chromatic polynomials.

Theorem 4. (June Huh, 2010) Suppose G is connected with chromatic polynomial

$$
P_{G}(t)=t^{n}-c_{1} t^{n-1}+c_{2} t^{n-2}-\cdots+(-1)^{n-1} c_{n-1} t .
$$

Then the sequence $\left(1, c_{1}, c_{2}, \ldots, c_{n-1}\right)$ is log-concave, which means

$$
c_{i-1} c_{i+1} \leqslant c_{i}^{2} \quad \text { for all } i
$$

In particular, it is unimodal, which means

$$
1 \leqslant c_{1} \leqslant c_{2} \leqslant \cdots \leqslant c_{k-1} \leqslant c_{k} \geqslant c_{k+1} \geqslant \cdots \geqslant c_{n-1}, \quad \text { for some } k
$$

Proof. This theorem proves a conjecture of Read from 1968. We will not prove the theorem (the proof involves algebraic geometry and singularity theory).

Exercise 5. 1. Why the name log-concave?
2. Prove that a log-concave sequence of positive real numbers is unimodal.

Remark 6. We can prove $1 \leqslant c_{1} \leqslant c_{2} \leqslant \cdots \leqslant c_{\left\lfloor\frac{1}{2}(n-1)\right\rfloor}$.
If G is a tree, then

$$
P_{G}(t)=t(t-1)^{n-1}=\sum_{i=0}^{n-1}\binom{n-1}{i}(-1)^{i} t^{n-i} \cdot t=t^{n}-\binom{n-1}{1} t^{n-1}+\binom{n-1}{2} t^{n-2}-\cdots
$$

The sequence $\left(1, c_{1}, c_{2}, \ldots\right)$ is $\left(1,\binom{n-1}{1},\binom{n-1}{2}, \cdots\right)$, and it is increasing up to the middle term.
Now suppose that G is connected, but not a tree. Then, by definition of a tree, there is an edge $e \in E(G)$ such that $G-e$ is still connected. For $i \leqslant \frac{1}{2}(n-1)$ we notice that

$$
P_{G}(t)=P_{G-e}(t)-P_{G / e}(t) \Longrightarrow c_{i-1}(G)=c_{i-1}(G-e)-\left(-c_{i-2}(G / e)\right)=c_{i-1}(G-e)+c_{i-2}(G / e)
$$

We know $i \leqslant \frac{1}{2}(n-1)$ and $i-1 \leqslant \frac{1}{2}(n-2)=\frac{1}{2}(|V(G / e)|-1)$, hence by induction

$$
c_{i-1}(G) \leqslant c_{i}(G-e)+c_{i-1}(G / e)=c_{i}(G)
$$

which ends the induction step.
Question. What else does the chromatic polynomial count? And how?
Definition 7. An orientation of G is a choice of direction for every edge. This gives a directed graph. If G has m edges, then it has 2^{m} possible orientations (which might also be isomorphic).

Definition 8. An orientation is acyclic if it has no closed directed walk. Let $a(G)$ be the number of acyclic orientations of G.

Theorem 9. (Stanley, 1973) If G has n vertices, then $a(G)=(-1)^{n} P_{G}(-1)$.

Example 10. - G is a tree with n vertices, then

$$
a(G)=2^{n-1}=(-1)^{n}(-1)(-1-1)^{n-1}=(-1)^{n} P_{G}(-1),
$$

- G is a cycle on n vertices, then

$$
\begin{aligned}
a(G) & =2^{n}-2, \\
(-1)^{n} P_{G}(-1) & =(-1)^{n}\left[(-2)^{n}+(-1)^{n}(-2)\right]=(-1)^{n}\left[(-1)^{n}\left(2^{n}-2\right)\right]=a(G),
\end{aligned}
$$

- $G=K_{n}$, then

$$
(-1)^{n} P_{G}(-1)=(-1)^{n}(-1)^{n}=(-1)^{n}(-1)(-1-1)(-1-2) \cdots(-1-(n-1))=(-1)^{n}(-1)^{n} n!
$$

An acyclic orientation is the same as ordering the vertices $v_{1}, v_{2}, \ldots, v_{n}$ (there are n ! possibilities to do this) and then choosing the orientation

$$
v_{i} \longrightarrow v_{j}, \quad \text { whenever } i>j .
$$

Proof. Take $e=x y \in E(G)$. Write $a^{+}(G-e), a^{-}(G-e), a^{0}(G-e)$ for the number of acyclic orientations of $G-e$ such that:

- There is a directed walk in $G-e$ from x to $y\left(a^{+}\right)$,
- There is a directed walk in $G-e$ from y to $x\left(a^{-}\right)$,
- There is no directed walk either way $\left(a^{0}\right)$.

Claim. $a(G-e)=a^{+}(G-e)+a^{-}(G-e)+a^{0}(G-e)$.
Proof. An acyclic orientation in $G-e$ cannot have directed walks $x \longrightarrow y$ and $y \longrightarrow x$ at the same time. These three sets are therefore disjoint and they give all the possibilities.

Claim. $a(G / e)=a^{0}(G-e)$.
Proof. Take an orientation of $G-e$ with no walk $x \longrightarrow y$ or $y \longrightarrow x$. For any $z \in N_{G-e}(x) \cap N_{G-e}(y)$, the edges $x z$ and $y z$ have the same orientation (if not, there would be a walk $x \longrightarrow z \longrightarrow y$ or $y \longrightarrow z \longrightarrow x$), hence either

$$
x \longrightarrow z \text { and } y \longrightarrow z
$$

or

$$
z \longrightarrow x \text { and } z \longrightarrow y
$$

The orientation of $G-e$ determines then an orientation of G / e (the edges $x z$ and $y z$ are compatible under the contraction). This orientation is also acyclic (a directed walk from $x y$ to itself would imply a directed walk in $G-e$ from x or y to y or x). This also works vice versa.
The idea here was that
Closed walks in $G / e=$ Walks $x \longrightarrow y$ or $y \longrightarrow x$ in $G-e$.

Claim. $a(G)=a^{+}(G-e)+a^{-}(G-e)+2 a^{0}(G-e)$.
Proof. For the first two terms there is only one way to extend the orientation of $G-e$ without closing a cycle in G. In the last case the edge $x y$ can be oriented both ways, since we don't have a walk from x to y or from y to x.

By these three claims we obtain

$$
\begin{aligned}
a(G) & =a^{+}(G-e)+a^{-}(G-e)+2 a^{0}(G-e)= \\
& =a^{+}(G-e)+a^{-}(G-e)+a^{0}(G-e)+a^{0}(G-e)= \\
& =a(G-e)+a^{0}(G-e)= \\
& =a(G-e)+a(G / e)
\end{aligned}
$$

We complete the proof by using induction:

- $G=K_{1}$, then $a(G)=1=(-1)^{1} P_{K_{1}}(-1)$,
- Pick an edge $e \in E(G)$, then (by induction assumption)

$$
\begin{aligned}
a(G) & =a(G-e)+a(G / e)= \\
& =(-1)^{n} P_{G-e}(-1)+(-1)^{n-1} P_{G / e}(-1)= \\
& =(-1)^{n}\left[P_{G-e}(-1)-P_{G / e}(-1)\right]= \\
& =(-1)^{n} P_{G}(-1)
\end{aligned}
$$

Definition 11. $\alpha \in \mathbb{C}$ is a chromatic root if $P_{G}(\alpha)=0$ for some graph G.
Observation 12. 1. Every natural number is a chromatic root,
2. For any G different from the empty graph, $P_{G}(0)=0$,
3. For any G with at least one edge, $P_{G}(1)=0$,
4. If α is a chromatic root, then so is $\alpha+1$,

Proof. We proved in the exercise session that $P_{G+K_{1}}(\alpha+1)=(\alpha+1) P_{G}(\alpha)$,
5. The set of chromatic roots is countable (it is a subset of the algebraic numbers).

Proposition 13. There is no chromatic root in $(-\infty, 0) \cup(0,1)$.
Proof. $\alpha<0$ is not a root of $P_{G}(t)$, since the coefficients of the polynomial have alternating signs.
Take $\alpha \in(0,1)$. Because $P_{G \sqcup H}(t)=P_{G}(t) P_{H}(t)$, it suffices to prove that $P_{G}(\alpha) \neq 0$ for any connected graph. Apply the deletion-contraction rule to G, in such a way that all the intermediate graphs are connected. At each step, either G is a tree (and we stop splitting) or there is an edge $e \in E(G)$ such that $G-e$ is still connected.

A branch of this splitting process with i contractions

- ends with an $(n-i)$-vertex tree,
- introduces a sign of $(-1)^{i}$,
- contributes $t(t-1)^{n-i-1}$ to $P_{G}(t)$.

Define d_{i} as the number of branches ending with an $(n-i)$-vertex tree, then

$$
P_{G}(t)=\sum d_{i}(-1)^{i} t(t-1)^{n-i-1}
$$

and of course we have $d_{i} \geqslant 0$. Evaluate $P_{G}(\alpha)$ for $\alpha \in(0,1)$:

$$
\operatorname{sgn}\left\{d_{i}(-1)^{i} \alpha(\alpha-1)^{n-i-1}\right\}=(-1)^{i} \cdot 1 \cdot(-1)^{n-i-1}=(-1)^{n-1},
$$

which means that all monomials in $P_{G}(\alpha)$ evaluate to positive or all evaluate to negative, hence $P_{G}(\alpha) \neq 0$ as $d_{i}>0$ for at least one i.

Remark 14. We used the deletion-contraction principle, but only until we reached trees (since we already know their chromatic polynomial).

Theorem 15. (Jackson, Thomassen) There are no chromatic roots in $(-\infty, 0) \cup(0,1) \cup\left(1, \frac{32}{27}\right)$. Moreover, the constant $\frac{32}{27}$ is optimal.

Theorem 16. (Sokal) The chromatic roots are dense in \mathbb{C}.
Theorem 17. (Birkhoff, Lewis) If G is planar, then $P_{G}(t)>0$ for all $t \in[5, \infty)$.
Remark 18. Moreover, it is conjectured that if G is planar, then $P_{G}(t)>0$ for all $t \in[4, \infty)$.

