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Edge Coloring
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In the next pages, G is always a graph, V (G) its set of vertices and E(G) its set of edges.

Definition 1. An edge coloring of G is a function f : E(G)→ C (for some set of colors C) such that if
e1e2 have a common endpoint then f(e1) 6= f(e2). The edge chromatic number ( chromatic index) χ′(G)
is the smallest k such that G has an edge-coloring with colors {1, . . . , k}.
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Example 2. • χ′(Cn) =

{
2 , 2|n
3 , 2 6 |n

• G is a bipartite graph, V (G) = Classes ∪ Teachers.
There is an edge tc if t is supposed to teach c

classes

Math Physics P.E. Geometry etc.
teachers

How many time slots do we need to schedule all lessons?
Answer: χ′(G). Colors ≡ time slots

• χ′(K12) = 11

Proof.

Season schedule of the Danish soccer league (figures for the case of K6, 6 teams)

colors ≡ weeks, color classes ≡ list of pairs playing that week
first week second week third week etc.
(fourth week) is not correct because some team is scheduled two games



Lemma 3. χ′(Kn) =

{
n− 1 , 2|n
n , 2 6 |n

χ′(K2) = 1 χ′(K3) = 3

Proof. n = 2k − 1 Arrange vertices into a regular n-gon. Choose a color class consisting of k parallel
edges (one vertex is left out). This color class has n possible rotations. These rotations cover all edges
of Kn. This is an edge-coloring with n colors,so χ′(Kn) ≤ n.

Upper bound: take any edge-coloring of Kn. The color class 1 must miss some vertex v (because
2 6 |n). Then, deg(v) = n−1, and all edges incident to v require n−1 colors.Total #colors ≥ 1+(n−1) = n

n = 2k deg(v) = n− 1, so we need at least n− 1 colors, χ′(Kn) ≥ n− 1. To construct a coloring with
n− 1 colors take the n− 1 rotations of the following color class: n− 1 vertices are arranged in a regular
(n− 1)-gon, and one vertex is in the origin. Use k− 1 parallel edges and one edge from the origin to the
vertex on the perimeter being left out.

Lemma 4. χ′(G) ≥ ∆(G)

Proof. We need at least ∆(G) colors just to color the edges incident to the vertex of maximum degree.

Example 5. ∆(G) = 3, but there is no 3-edge coloring (checked in excercises). There is one with 4
colors, so χ′(G) = 4

Definition 6. A matching in G is a set of edges, no two of which have a common endpoint [equivalently,
1-regular (every vertex has deg.1) subgraph of G].

Observation 7. • If f is an edge-coloring then every color class f−1(c) is a matching.

• An edge-coloring with k colors is the same as a partition of E(G) into k matchings

• For any two colors c1, c2 ∈ C, c1 6= c2, f−1(c1) ∪ f−1(c2) is a disjoint union of cycles and paths.
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Proof. The first two parts are clear. For part 3, note that in f−1(c1) ∪ f−1(c2) every vertex is of degree
6 2.

Definition 8. The line graph G is the graph L(G) which keeps track of incidences between edges of G.
Formally: V (L(G)) = E(G)
e1e2 ∈ E(L(G)) if e1, e2 share a common vertex in G (here ei ∈ E(G), ei ∈ V (L(G))).

Example 9.
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Glossary

edge in G ≡ vertex of L(G)
matching in G ≡ independent set in L(G)
edge-coloring of G ≡ vertex coloring of L(G)
χ′(G)=χ(L(G))

Observation 10. ω(L(G)) ≥ ∆(G) because all edges incedent to a fixed vertex v, induce a clique in
L(G).That implies
χ′(G) = χ(L(G)) ≥ ω(L(G)) ≥ ∆(G) which we already knew. Moreover:
∆(L(G)) = maxuv∈E(G)(degG(u) + degG(v)− 2) ≤ 2∆(G)− 2

u v

e
deg(u)− 1 deg(v)− 1

Now, greedy coloring gives:
χ′(G) = χ(L(G)) ≤ ∆(L(G)) + 1 ≤ 2∆(G)− 1
We proved: ∆(G) ≤ χ′(G) ≤ 2∆(G)− 1

Theorem 11. (Vizing ’64) For any graph G we have ∆(G) ≤ χ′(G) ≤ ∆(G) + 1.

Remark 12. It is NP-hard to recognize if χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1, even for graphs with
∆(G) = 3.
Graphs with χ′(G) = ∆(G) are called Class 1
Graphs with χ′(G) = ∆(G) + 1 are called Class 2
But we can still indentify some graph classes for which χ′(G) = ∆(G).

Theorem 13. (König) If G is bipartite then χ′(G) = ∆(G)

Hall’s marriage theorem(1935-original version): We have a number of boys and girls, each boy fancies
some of the girls. Is it possible to arrange marriages, so that each boy marries some girls he likes?
Obvious necessary condition: ”Each set of k boys (k ≥ 1) likes, altogether, at least k different girls”.

Theorem 14. (Hall) If G is a bipartite graph with parts V (G) = A ∪B, such that for every X ⊆ A we
have:

|
⋃
x∈X

NG(x)| ≥ |X|

then G has a matching of size |A|.
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A

x X

boys

B

N(x)

> |X| girls

Proof. Write N(X) = NG(X) =
⋃

x∈X NG(x). Induction on n = |A|

1
If n = 1

A

B the unique vertex of A has at least one edge.

2a
For any X ( A, |NG(X)| ≥ |X|+ 1.

Then take any a ∈ A, b ∈ NG(a), match them and use induction on G[A− a,B − b].

G[A− a,B − b]

a

b B

A

Possible because for any X ⊆ A− a we have |N(X)| ≥ |X|+ 1− 1 = |X|

2b
NG(X) = |X| for some X ( A.

then: by induction find a matching in G[X,N(X)]
Also, there is a matching in G[A−X,B −N(X)]
Possible,because for any Y ⊆ A−X

X A−X Y

N(X) B −N(X)

|Y |+ |X| = |Y ∪X| 6 |NG(Y ∪X)| = |N(X)|+ |NG(Y )∩ (B −N(X))| = |X|+ |NG(Y )∩ (B −N(X))|
So |Y | 6 |NG(Y ) ∩ (B −N(X))| and therefore induction applies to G[A−X,B −N(X)]
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