Graph coloring
 Lecture notes, vol. 9
 Edge Coloring

In the next pages, G is always a graph, $V(G)$ its set of vertices and $E(G)$ its set of edges.
Definition 1. An edge coloring of G is a function $f: E(G) \rightarrow C$ (for some set of colors C) such that if $e_{1} e_{2}$ have a common endpoint then $f\left(e_{1}\right) \neq f\left(e_{2}\right)$. The edge chromatic number (chromatic index) $\chi^{\prime}(G)$ is the smallest k such that G has an edge-coloring with colors $\{1, \ldots, k\}$.

Example 2. - $\chi^{\prime}\left(C_{n}\right)= \begin{cases}2 & , 2 \mid n \\ 3, & 2 \nmid n\end{cases}$

- G is a bipartite graph, $V(G)=$ Classes \cup Teachers .

There is an edge $t c$ if t is supposed to teach c

How many time slots do we need to schedule all lessons?
Answer: $\chi^{\prime}(G)$. Colors \equiv time slots

- $\chi^{\prime}\left(K_{12}\right)=11$

Season schedule of the Danish soccer league (figures for the case of $K_{6}, 6$ teams)

Proof.

colors \equiv weeks, color classes \equiv list of pairs playing that week first week second week third week etc.
(fourth week) is not correct because some team is scheduled two games

Lemma 3. $\chi^{\prime}\left(K_{n}\right)=\left\{\begin{array}{ll}n-1 & , 2 \mid n \\ n, 2 \nmid n & \end{array} \quad \chi^{\prime}\left(K_{2}\right)=1\right.$.

Proof. $\underline{n=2 k-1}$ Arrange vertices into a regular n-gon. Choose a color class consisting of k parallel edges (one vertex is left out). This color class has n possible rotations. These rotations cover all edges of K_{n}. This is an edge-coloring with n colors,so $\chi^{\prime}\left(K_{n}\right) \leq n$.

Upper bound: take any edge-coloring of K_{n}. The color class 1 must miss some vertex v (because $2 \nmid n)$. Then, $\operatorname{deg}(v)=n-1$, and all edges incident to v require $n-1$ colors. Total $\#$ colors $\geq 1+(n-1)=n$
$n=2 k \operatorname{deg}(v)=n-1$, so we need at least $n-1$ colors, $\chi^{\prime}\left(K_{n}\right) \geq n-1$. To construct a coloring with $n-1$ colors take the $n-1$ rotations of the following color class: $n-1$ vertices are arranged in a regular $(n-1)$-gon, and one vertex is in the origin. Use $k-1$ parallel edges and one edge from the origin to the vertex on the perimeter being left out.

Lemma 4. $\chi^{\prime}(G) \geq \Delta(G)$
Proof. We need at least $\Delta(G)$ colors just to color the edges incident to the vertex of maximum degree.
Example 5. $\Delta(G)=3$, but there is no 3-edge coloring (checked in excercises). There is one with 4 colors, so $\chi^{\prime}(G)=4$

Definition 6. A matching in G is a set of edges, no two of which have a common endpoint [equivalently, 1-regular (every vertex has deg.1) subgraph of $G]$.

Observation 7. - If f is an edge-coloring then every color class $f^{-1}(c)$ is a matching.

- An edge-coloring with k colors is the same as a partition of $E(G)$ into k matchings
- For any two colors $c_{1}, c_{2} \in C, c_{1} \neq c_{2}, f^{-1}\left(c_{1}\right) \cup f^{-1}\left(c_{2}\right)$ is a disjoint union of cycles and paths.

Proof. The first two parts are clear. For part 3, note that in $f^{-1}\left(c_{1}\right) \cup f^{-1}\left(c_{2}\right)$ every vertex is of degree $\leqslant 2$.

Definition 8. The line graph G is the graph $L(G)$ which keeps track of incidences between edges of G. Formally: $V(L(G))=E(G)$
$e_{1} e_{2} \in E(L(G))$ if e_{1}, e_{2} share a common vertex in G (here $e_{i} \in E(G), e_{i} \in V(L(G))$).

Example 9.

Glossary

edge in $G \equiv$ vertex of $L(G)$
matching in $G \equiv$ independent set in $L(G)$
edge-coloring of $G \equiv$ vertex coloring of $L(G)$
$\chi^{\prime}(G)=\chi(L(G))$
Observation 10. $\omega(L(G)) \geq \Delta(G)$ because all edges incedent to a fixed vertex v, induce a clique in $L(G)$.That implies
$\chi^{\prime}(G)=\chi(L(G)) \geq \omega(L(G)) \geq \Delta(G)$ which we already knew. Moreover:
$\Delta(L(G))=\max _{u v \in E(G)}\left(d e g_{G}(u)+\operatorname{deg}_{G}(v)-2\right) \leq 2 \Delta(G)-2$

Now, greedy coloring gives:
$\chi^{\prime}(G)=\chi(L(G)) \leq \Delta(L(G))+1 \leq 2 \Delta(G)-1$
We proved: $\Delta(G) \leq \chi^{\prime}(G) \leq 2 \Delta(G)-1$
Theorem 11. (Vizing '64) For any graph G we have $\Delta(G) \leq \chi^{\prime}(G) \leq \Delta(G)+1$.
Remark 12. It is NP-hard to recognize if $\chi^{\prime}(G)=\Delta(G)$ or $\chi^{\prime}(G)=\Delta(G)+1$, even for graphs with $\Delta(G)=3$.
Graphs with $\chi^{\prime}(G)=\Delta(G)$ are called Class 1
Graphs with $\chi^{\prime}(G)=\Delta(G)+1$ are called Class 2
But we can still indentify some graph classes for which $\chi^{\prime}(G)=\Delta(G)$.
Theorem 13. (König) If G is bipartite then $\chi^{\prime}(G)=\Delta(G)$
Hall's marriage theorem(1935-original version): We have a number of boys and girls, each boy fancies some of the girls. Is it possible to arrange marriages, so that each boy marries some girls he likes? Obvious necessary condition: "Each set of k boys ($k \geq 1$) likes, altogether, at least k different girls".

Theorem 14. (Hall) If G is a bipartite graph with parts $V(G)=A \cup B$, such that for every $X \subseteq A$ we have:

$$
\left|\bigcup_{x \in X} N_{G}(x)\right| \geq|X|
$$

then G has a matching of size $|A|$.

Proof. Write $N(X)=N_{G}(X)=\bigcup_{x \in X} N_{G}(x)$. Induction on $n=|A|$
(1)

If $n=1$

the unique vertex of A has at least one edge.

2 a
For any $X \subsetneq A,\left|N_{G}(X)\right| \geq|X|+1$.
Then take any $a \in A, b \in N_{G}(a)$, match them and use induction on $G[A-a, B-b]$.

Possible because for any $X \subseteq A-a$ we have $|N(X)| \geq|X|+1-1=|X|$
2b
$N_{G}(X)=|X|$ for some $X \subsetneq A$.
then: by induction find a matching in $G[X, N(X)]$
Also, there is a matching in $G[A-X, B-N(X)]$
Possible, because for any $Y \subseteq A-X$

$|Y|+|X|=|Y \cup X| \leqslant\left|N_{G}(Y \cup X)\right|=|N(X)|+\left|N_{G}(Y) \cap(B-N(X))\right|=|X|+\left|N_{G}(Y) \cap(B-N(X))\right|$ So $|Y| \leqslant\left|N_{G}(Y) \cap(B-N(X))\right|$ and therefore induction applies to $G[A-X, B-N(X)]$

