COMPLEXITY OF SIMPLICIAL HOMOLOGY AND INDEPENDENCE
COMPLEXES OF CHORDAL GRAPHS

MICHAL ADAMASZEK AND JURAJ STACHO

ABSTRACT. We prove the NP-hardness of computing homology groups of simplicial com-
plexes when the size of the input complex is measured by the number of maximal faces or
the number of minimal non-faces. The latter case implies NP-hardness of the homology
problem for clique and independence complexes of graphs.

Our approach is based on the observation that the homology of an independence complex
of a chordal graph can be described using what we call strong induced matchings in the
graph (also known as cross—cycles). We show that finding such a matching of a specified size
in a chordal graph is NP-hard.

We further study the computational complexity of finding any cross—cycle in arbitrary
and chordal graphs.

1. INTRODUCTION

The main purpose of this paper is to study the difficulty of computing homology groups
for certain representations of simplicial complexes. Homology groups, together with their
persistent versions, are topological invariants of fundamental importance in applications of
computational topology [7], and various kinds of simplicial complexes are commonly used
to represent data sets. We will be concerned with the following family of decision problems
parametrized by an input type T .

Problem HOMOLOGY 1 (K, /)
Input: A simplicial complex K represented as T and an integer £ > 0 given in binary.
Output: TRUE if Hy(K) 2% 0 and FALSE if Hy(K) = 0.

Here H, ¢(K) denotes the ¢-th reduced homology group of K and all the results of this paper
are true with arbitrary coefficients. The computational complexity of the problem depends
on the input type 7 which determines how the simplicial complex K is represented. We will
now discuss various choices of 7 and introduce our results.

The list of all simplices. In the applications in computational topology the size of K is
usually measured in terms of the number n of all simplices. In other words, it is assumed that
K is represented by the list of all its simplices. In this case the homology problem can be
formulated directly as a linear algebra problem for matrices of size at most n x n. Over the
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integers it can be solved by reduction to the Smith normal form in time O(n®37) [22]. For
coefficients in a field Gaussian elimination is likely to be the most efficient method [§]. Either
way, the problem can be solved in polynomial time (although a lot of non-trivial optimization
is required to handle data sets with, say, n = 10? simplices, occurring in practice).

The representation of K via the list of all simplices is not very efficient. Below we will
discuss two succinct kinds of representations which occur in practice, and which lead to
complexes with n exponential in the size of the input. One would expect that the homology
problem for such inputs is NP-hard. Surprisingly though, the complexity of these natural
problems has not been investigated before.

Before we proceed, note that for most reasonable representations of K (in particular the
ones studied next), the homology problem is solvable in polynomial time for any fixed ¢ as
well as for complexes of dimension bounded by any fixed d. This is because the relevant part
of the chain complex has polynomial size, and can be generated in polynomial time, where
the degree of the polynomial is a function of £ or d. The subsequent matrix operations thus
take time polynomial in the size of the input.

Maximal faces, minimal non-faces. Kaibel and Pfetsch [I7, Problem 33] asked if the
homology problem is NP-hard when K is represented by the list of facets (maximal faces).
We answer this question, and its dual, affirmatively.

Theorem 1.1. The homology problem is NP-hard when the input complex K is represented
by either (a) the list of vertices and the list of mazimal faces or (b) the list of vertices and
the list of minimal non-faces.

The representation via maximal faces is quite natural, and in fact most existing simplicial
homology software accepts this kind of input. The most prominent class of complexes natu-
rally described by minimal non-faces are clique complexes, and among them Rips complexes;
see below.

It has recently been shown that computing the Euler characteristic of a simplicial complex
given by maximal faces is #P-hard [2I]. We note in passing one other famous problem
involving such representations. Suppose we have two simplicial complexes K; and Ky, with
the same vertex set, where K is given by its maximal faces and K5 is given by its minimal non-
faces. Then the decision problem “Does K1 = Ky 7”7, better known as monotone dualization
or hypergraph transversal has received a lot of attention in the theoretical computer science
community [I0]. Its complexity status is open; a quasi-polynomial time algorithm is known
[12]. An equivalent version of this problem asks to decide if a simplicial complex K given by
maximal faces is Alexander dual to itself.

Clique complexes. Another class of spaces we are interested in are clique (or flag) com-
plexes. A clique complex of a graph G is the simplicial complex whose simplices are all the
cliques (complete subgraphs) of G. These complexes appear in applications as Rips com-
plexes, that is clique complexes of Rips graphs, used to capture the notion of proximity in
metric spaces. In this scenario the entire simplicial complex is determined by the graph,
which becomes the most natural and efficient input representation. We will prove that the
homology problem for this representation of clique complexes is also NP-hard.

Theorem 1.2. The homology problem is NP-hard for the class of clique complexes C1(G),
when the input is the graph G.
Moreover, it remains NP-hard if G is restricted to any of the following classes:
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(a) co-chordal graphs,
(b) co-bipartite graphs,
(c) quasi-Rips graphs of finite subsets of R' with any fized uncertainty interval.

All the hardness results in this paper will be deduced from Theorem (a). Co-chordal
graphs are complements of chordal graphs (in general, co-P are the complements of graphs
in P), and the latter can be defined for instance as intersection graphs of subtrees of a tree.
To prove Theorem (a) we will construct a more direct combinatorial model of homology
generators in clique complexes of co-chordal graphs, which we call strong induced matchings in
the graph’s complement (Definition . They correspond to embedded spheres isomorphic to
the boundary complexes of cross—polytopes, called cross-cycles by Jonsson [15]. The following
theorem, which we prove in Section [3] is our main link between topological and combinatorial
properties of co-chordal graphs.

Theorem If G is co-chordal then Hy_1(CIG)) 2 0 if and only if the complement G
contains a strong induced matching of order k.

The quasi-Rips graphs appearing in Theorem (c) are generalizations of Rips graphs and
were introduced in [5] as a way of modelling spatial uncertainty in the Rips graph construction.
For all the necessary definitions see Section

More about co-chordal graphs. We believe that our description of homology of clique
complexes of co-chordal graphs can be of independent interest. This class of spaces has
been studied quite successfully in the context of combinatorial topology and combinatorial
commutative algebra [11} 9, [I8] 24 26]. The next theorem is an algorithmic counterpart to
the hardness result of Theorem(a). Here H,(K) = D, Hy(K) denotes the total homology
of K (in all dimensions).

Theorem 1.3. For the class of co-chordal graphs G:

(a) The homology problem for CY(G) is in NP when the input is the graph G.
(b) There is an algorithm with running time O(|E(G)|?) which decides if H,(Cl(G)) = 0.

It is not clear if part (a) is true for arbitrary clique complexes, or for complexes represented
by maximal faces. Naively, non-triviality of a homology group could be witnessed by a non-
bounding cycle, but that may have size exponential in the size of the input.

For a co-chordal graph G the complex Cl(G) is homotopy equivalent to a wedge of spheres
(Corollary , therefore H,(Cl(G)) = 0 is equivalent to Cl(G) being contractible. The
problem of deciding if C1(G) is contractible for an arbitrary graph G is undecidable [23|
Theorem 11].

This makes the clique complexes of co-chordal graphs an interesting boundary case for the
complexity of the homology problem in the following sense: when G is co-chordal, testing for
the non-triviality of Hy(Cl(G)) with ¢ as part of input is NP-hard, but detecting if C1(G) has
any non-trivial homology group is possible in polynomial time.

Organization of the paper. Section [2| contains preliminaries on topology and combina-
torics. In that section we also deduce all the hardness results from Theorem [1.2}(a). In
Section |3| we define strong induced matchings and prove Theorem (a). Section {4 con-
tains the algorithm of Theorem Some final remarks and open problems are gathered in
Section B
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2. PRELIMINARIES

We assume a degree of familiarity with simplicial topology and basic graph theory and
refer to the books by Kozlov [19] and West [25]. Below we briefly review the definitions and
standardize notation.

Combinatorial topology. A simplicial compler K with vertex set V is a family K C 2V
such that A € K and B C A imply B € K. We will identify a simplicial complex with its
geometric realization. The elements of K are called simplices or faces. The dimension of a
face A € K is dim A := |A| — 1.

We write Hy(K;k) and H’(K;k) for the reduced homology and cohomology groups of K
with coefficients in k. All of our results hold for arbitrary k, and hence it will be omitted.
Group isomorphism is denoted with =.

The symbol Ll denotes disjoint union. The notation \/,.; X; stands for the wedge sum of
pointed spaces {X;}ic;. By convention the wedge sum is just a point if I = ). We write XK
for the suspension of a simplicial complex K. The symbol ~ denotes homotopy equivalence.

If K is a simplicial complex with vertex set V' then we write B(K) for the set of mazimal
faces (facets) of K, that is the set of inclusion-wise maximal elements of K. We also write
¢(K) for the set of minimal non-faces of K, which are the inclusion-wise minimal elements
of 2"\ K. E| For a fixed vertex set V' each of B(K) and €(K) uniquely determines K.

Suppose that G = (V, E), with E C (g) is an undirected graph without multiple edges

or loops. The complement of G is the graph G with vertex set V and edge set (‘2/) \E. A
clique of G is a subset of V(G) whose elements are pairwise adjacent. An independent set of
G is a subset of V(G) whose elements are pairwise non-adjacent. Clearly a clique of G is an
independent set of G, and vice-versa.

The clique complex C1(G) of a graph G is the simplicial complex with vertex set V (G) whose
faces are all the cliques in G. The independence complex 1(G) is the simplicial complex whose
faces are all the independent sets in G. We have CI(G) = I(G).

For a finite metric space X with distance function dx : X x X — R and a real number
r > 0 the Rips graph R(X;r) is the graph with vertex set X such that x1, 29 € X are adjacent
in R(X;r) if and only if dx(x1,22) < r. A quasi-Rips graph with uncertainty interval (r,r")
on the space X is any graph @ for which V(Q) = X and E(R(X;r)) C E(Q) C E(R(X;r")).
A Rips complex (resp. quasi-Rips complex) is the clique complex of a Rips (resp. quasi-Rips)
graph. Rips complexes are used heavily in computational topology and quasi-Rips complexes
are a relaxation which accommodates the possibility of non-precise distance measurements;
see [0] for details.

If G=(V,E)and W CV then we write G[W] for the induced subgraph of G with vertex
set W. To simplify notation we write G \ W for G[V(G) \ W] and G \ v for G[V(G) \ {v}].
For a vertex v € V(G) we define the open neighbourhood Ng(v) = {w : vw € E(G)} and
the closed neighbourhood Ng[v] = Ng(v) U {v}. A subset D C V(G) is called dominating if
every vertex of V(G) \ D is adjacent to some vertex of D.

If P is a class of graphs then co-P is the class of graphs G such that G is in P. In particular,
the class of clique complexes of graphs in co-P coincides with the class of independence
complexes of graphs in P.

1f the simplicial complex K happens to be a matroid, then B(K) is the set of bases and €(K) is the set of
circuits of K.
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Chordal graphs. It will be convenient to prove our results in the language of independence
complexes, rather than clique complexes. The core of our approach exploits topological prop-
erties of independence complexes of chordal graphs (which are the same as clique complexes of
co-chordal graphs featured in Theorems (a) and . Chordal graphs are a classical topic
in structural and algorithmic graph theory and their independence complexes are well under-
stood in the context of combinatorial topology and commutative algebra [111, 9} 18] 24, 26].

A graph is called chordal if it has no induced cycles of length four or higher. This class is
closed under taking induced subgraphs. A vertex v of a graph G is called simplicz’aﬂ if Ng(v)
is a clique of G. By a classical result of Dirac [6], every nonempty chordal graph G has a
simplicial vertex. As a consequence, the vertices of G can be arranged in a perfect elimination
ordering, that is a linear order vy,...,v, such that v; is simplicial in G[{v;,...,v,}] for all
1 =1,...,n. The existence of such an ordering characterizes chordal graphs.

For graphs with a simplicial vertex we have the following homotopy decomposition, origi-
nally due to Engstrém [I1]. We include the proof for completeness.

Lemma 2.1. [I1, Theorem 3.7] If G is any graph and v is a simplicial vertez then there is a
homotopy equivalence

=
8
I

\/ T I(G\ Nglw).

wENg(v)

Proof. If v is isolated then I(G) ~ %, so the result holds. Otherwise let w be any vertex in
Ng(v). Tt suffices to show I(G) ~ I(G \ w) VX I(G\ Nglw]). Since v is still simplicial in
G \ w the lemma will then follow by induction.

In the complex I(G) the link of w is (G \ Ng[w]) and the deletion of w is I(G \ w). It
means that I(G) is the mapping cone of the inclusion ¢, : I(G\ Nglw]) — I(G \ w).

Since Ng[v] € Nglw], every independent set in G\ Ng[w] can be extended by v to an
independent set in G \ w. It means that ¢, factors through the contractible cone I(G \
Nglw]) * {v}. As a consequence i, is null-homotopic and its mapping cone is homotopy
equivalent to (G \ w) VX I(G\ Nglw]). O

Applying Lemma [2.1] inductively yields the next corollary. It also follows from the fact
that independence complexes of chordal graphs are vertex-decomposable [26, Corollary 7).

Corollary 2.2. If G is chordal then I(G) is homotopy equivalent to a wedge of spheres.

Remark 2.3. If F is a forest then a vertex v of F' is simplicial if and only if it is isolated or
a leaf. In the latter case Np(v) is a singleton. Lemma immediately yields a linear time
algorithm that determines the homotopy type of I(F'), answering a question of Ehrenborg
and Hetyei [9].

Remark 2.4. If G is any graph and e is the graph consisting of a single edge then I(GUe) =
Y I(G). Moreover, if CG is the cone on G, that is the graph obtained by adding one new
vertex adjacent to all of G, then I(CG) = I(G) v S°. Both G Ue and CG are chordal if G is
chordal. Successively applying these operations one shows that every finite wedge of spheres
can appear as the homotopy type of an independence complex of a chordal graph.

Easy implications. We can now reduce all of the NP-hardness results to Theorem [1.2|(a).

2This standard graph theory terminology unfortunately clashes with the other meaning of simplicial in this
paper.
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— (b) Suppose G is a graph. We have €(Cl(G)) = E(G), i.e. the set of non-edges
of G forms the description of Cl(G) via minimal non-faces, of size polynomial in the size of G.
This reduces the homology problem for clique complexes of graphs to the homology problem
for complexes given by vertices and minimal non-faces.

(a) = (a). Given a co-chordal graph G with n vertices consider a simplicial complex
K¢ with vertex set V(G) and with faces defined by the relation

AeKg = (V(G)\A) ¢ClG).
The complex K¢ is the Alexander dual of CI(G). We have
B(Ka) ={V(G)\{z.y} : 2y € E@G)}

which means that the representation of K via vertices and maximal faces can be computed
in polynomial time from G. We also have the relations

H,oo-3(Kg) = HY(CI(G)) = Hy(CI(G))

where the first equality holds by Alexander duality [2], and the second one is a consequence of
the fact that C1(G) is homotopy equivalent to a wedge of spheres (Corollary. That reduces
the homology problem for the pair (Cl(G),¢) to the homology problem for (Kg,n — ¢ — 3) in
polynomial time.

[1.1}(a) = [1.2}(b). Consider a simplicial complex K represented by n vertices v1,..., v,
and m maximal faces F1,..., Fy,,. Let Gk be the bipartite graph with parts of size n and m,
corresponding to the sets V(K') and B(K), such that there is an edge from v; to Fj if and
only if v; € Fj. Clearly G can be constructed from the facet description of K in polynomial
time. It is a folklore theorem (see for instance [I, Theorem 3.8]) that

I(Gg) ~ S K.

In particular Hy(K) = Hyy (I(G)) = Hyy1(CL(Gg)). That reduces the homology problem
for complexes given by maximal faces to the homology problem for clique complexes of co-
bipartite graphs.

[1.2}(b) =[1.2}(c). Fix 0 < r < 1. Every co-bipartite graph G can be realized as a quasi-
Rips graph of a subset of R! with uncertainty interval (r,7’), which can be seen by placing the
vertices of the two parts of G on the real line in the intervals (0, 3(r' —r)) and (3(r' +7),7’),
respectively. Therefore every co-bipartite graph is a quasi-Rips graph in R', and the reduction

is immediate.

3. INDEPENDENCE COMPLEXES OF CHORDAL GRAPHS: HARDNESS

In this section we give a purely combinatorial characterization of homology classes in in-
dependence complexes of chordal graphs in terms of matchings. This leads to the proof of
Theorem [1.2/(a) and Theorem (1.3 (a).

A matching of order k is the graph on 2k vertices that is a disjoint union of k edges. If
M is a matching of order k then the independence complex I(M) is the join of k copies of
59, hence it is homeomorphic to S¥~!. More precisely, I (M) is isomorphic to the boundary
complex of the k-dimensional cross-polytope.

An induced matching M in G is an induced subgraph of G isomorphic to a matching. If M
is a matching of order k in G then the subcomplex I (M) of I(G) is an embedded (k—1)-sphere.
In particular, the inclusion I(M) < I(G) determines a homology class +ay € Hy_1(I(G))
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(the sign depends on the choice of orientations which we will never have to concern ourselves
with). Of course this class may be trivial. The next definition and lemma provide a simple
witness of the non-triviality of ajy.

Definition 3.1. A pair (M, D) is called a strong induced matching (s.i.m.) of order k in a
graph G if

(a) M is an induced matching of order k in G,

(b) |D| =k and D contains ezactly one vertex from each edge of M,

(¢) D is a mazimal independent set of G.

Conditions (a) and (b) imply that D is an independent set of G and then (c) is equivalent
to asking that D is dominating. See Figure [2| for an example.

Eemma 3.2. If (M, D) is a strong induced matching in G then the homology class apr €
Hy_1(I(Q)) is non-trivial.

Proof. The cycle representing the class s contains in its support the oriented simplex [D].
Since D is a maximal face of I(G), it does not appear in the image of the boundary map, and
therefore the cycle representing oy is not a boundary. ([l

Remark 3.3. Homology classes in I(G) defined by strong induced matchings in G were
introduced by Jonsson [15] under the name cross-cycles. In general, homology classes defined
by matchings appear in a number of contexts. They are the typical generators of homology for
independence complexes of random graphs [16]. Moreover, they are the minimal generators,
in the sense that every homology class in Hy_1 of a clique or independence complex must
be supported on at least 2k vertices [16, Lemma 5.3]. This motivates our interest in their

algorithmic properties.

Remark 3.4. To our best knowledge strong induced matchings have not been studied in
(algorithmic) graph theory. In this remark we discuss two related problems.

A mazimum induced matching (m.i.m.) is an induced matching of largest cardinality in
the graph. A dominating induced matching (d.i.m.) is an induced matching M such that
every edge of G is either in M or incident to some edge of M. Every d.i.m. is a m.i.m. [4],
but no other implication holds between the properties of s.i.m., m.i.m. and d.i.m. A graph
need not have a strong or dominating induced matching. In this respect the notion of s.i.m.
is closer to that of a d.i.m.

Finding either a maximum, dominating or strong induced matching is NP-hard in general
graphs and polynomial-time in chordal graphs. This is shown in [3] for m.i.m., in [20] for
d.i.m. and in this paper for s.i.m. The hardness proofs are rather straightforward in all cases.
The algorithms for chordal graphs are based on the structure of clique-neighbourhoods in
chordal graphs in the case of [3], on a reduction to series-parallel graphs in [20] and on the
tree model of a chordal graph in this paper. It is the interplay between induced matchings
and vertex-dominating subsets in the definition of a s.i.m. that makes the s.i.m. problem
quite distinct from the other two.

To clarify the boundary cases we remark that if G is the empty graph (that means V(G) =
0) then (M, D) = (0,0) is a s.i.m. in G of order 0.

The next main result builds the bridge between topology and graph theory for chordal
graphs.
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Theorem 3.5. Suppose G is a chordal graph and k > 0. Then G has a strong induced
matching of order k if and only if Hx_1(1(G)) 2 0.

Proof. If G has a strong induced matching of order k then Hy_i(I(G)) 2 0 follows from
Lemma The other implication will be proved by induction on |V (G)].

If V(G) = 0, then I(G) = 0 is the simplicial complex with empty vertex set. We have
Hj_1(0) 20 if and only if k = 0. In this case the pair (§,0) is a s.i.m. of order 0 in G and we
established the base of induction. _

Now let G be a chordal graph with at least one vertex and suppose that Hy_1(I(G)) % 0.
Let v be any simplicial vertex of G. By Lemma [2.1] we have

0% Hy1(I1(G)) = @ Hy,_5(I(G\ Ng[wl])).

wENG(”U)

It follows that there exists a vertex w € Ng(v) such that Hy_5(I(G\ Ng[w])) 2 0. The graph
G\ N¢[w] is chordal, so by induction it has a strong induced matching (M’, D) of order k—1.
Now define a new pair (M, D) of order k in G by setting

M = MU {wv}, D =D'u{w}.
The vertices in M induce a matching since neither v nor w are adjacent to any vertex of
V(M') C V(G \ Ng|w]). Every vertex of V(G)\ D is either in Ng[w], and then it is adjacent

to w, or in G \ Ng[w], and then it is adjacent to an element of D’. It follows that (M, D) is
a s.im. of order k in G. O

Remark 3.6. One can show that even more is true. If GG is chordal then the homology group
Hji_1(I(G); k) is generated, as a k-module, by the classes ajs where M varies over all strong
induced matchings (M, D) of order k in G. The proof is a simple extension of the proof of
Theorem We are not going to use this result, so we omit the details.

We have thus reduced the homology problem for independence complexes of chordal graphs
to the problem of detecting a strong induced matching of a specified order in a chordal graph.
We will now prove that the latter problem is NP-complete. Combined with Theorem that
immediately yields Theorem [1.2}(a) and Theorem [1.3|(a).

Theorem 3.7. The problem of deciding, given a chordal graph G and an integer k, whether
G has a strong induced matching of order k, is NP-complete.

To prove this theorem we first need to establish an auxiliary hardness reduction.

Lemma 3.8. The problem of deciding, given a chordal graph G and an integer k, whether G
has a mazimal independent set of size exactly k, is NP-complete.

Proof. The proof is by reduction from the following problem: given an arbitrary graph H and
an integer k, does H have a dominating set of size exactly k7 This problem is NP-complete,
since finding a minimum size dominating set in H is NP-complete [13, Problem GT2].

Now suppose we are given an arbitrary graph H with n vertices. Construct a graph G with
7n vertices as follows (see Figure |1f):

V(G) = {vo,v1,v2,v3,v4,v5,06 : vEV(H)}
EG) = {vowy : vywe V(H)} U{vow; : vw e E(H)}
U{wvovr, v1va, v1v4, 0105, V106, v2v3 © v € V(H)}
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i

Vo

Vo Wo

FiGure 1. The gadget used in Lemma [3.8

For simplicity define V; = {v; : v € V(H)} C V(G) for i = 0,...,6. Note that 1 is a
clique of GG. The graph G is chordal; a perfect elimination ordering is to remove vertices of
V3 followed by Vo, Vi, Vs, Vg, V1 and finally the vertices of Vj in any order.

Now we prove the following claim: H has a dominating set of size k if and only if G has a
maximal independent set of size 4n — 2k. This reduction will clearly prove the lemma.

First suppose that H has a dominating set D of size k. Define a subset D" of V(G) by

D' = {vy,v3 : v € D}U{vg,vy4,v5,06 : v & D}.

It is obvious that |D'| = 2|D| + 4(n — |D|) = 4n — 2k, that D’ is independent and that every
vertex of V4 U --- U Vg is either in D’ or adjacent to a vertex of D’. Consider any vertex
vo € Vo. If v € D then v is adjacent to v1 € D'. If v € D then vw € E(H) for some w € D
and therefore vow; € E(G) with wy € D'. That proves D’ is a dominating (hence maximal)
independent set.

Conversely, suppose that G contains an independent dominating set D’ of size 4n — 2k. For

every v € V(H) either v € D’ or v3 € D'. Further, we have the implications
vyeD' = wvvg,vs,06 €D, vi,v3¢ D,
/ /
v3 € D’ U37U4>U57?—jﬁ € D> V1, V2 ¢D/> or
v1,v3 € D', vg,v4,v5,06 € D'.

In particular |[D'N (V3 U---UVg)| is even. Since V} is a clique, we have |[D'NVp| < 1. Because
|D'| is even, these conditions imply D' NV = 0.
Define a subset of V(H) by D = {v € V(H) : v; € D'}. By the above observations
4n — 2k = |D'| = 2|D| + 4(n — |D|)

and so |D| = k. Since D' was dominating in G, every vertex v € V(H) is either in D, or it is
adjacent to some w € D for which vow; € E(G). This shows that D is dominating in H, as
required. ]

We can now prove the main result of this section.

Proof of Theorem[3.7. The problem is clearly in NP. To prove NP-hardness we describe a
polynomial-time reduction from the problem of Lemma [3.§

Consider a chordal graph G and an integer k. We construct a graph G’ from G by substi-
tuting a clique of size two for every vertex of G. More precisely, G’ is defined as follows:

V(G = {vg,v1 : veV(G)}
E(G) = {vvr : v e V(Q)} U {vowo, vows, viwe,viwy : vw € E(G)}

Note that G’ is chordal, since chordal graphs are closed under clique substitution.
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FIGURE 2. (Left) A chordal graph with a strong induced matching of order 2;
the set D = {3,7} is a dominating independent set. (Right) A tree model of
this graph (see Section [4).

The proof will be completed if we verify the following claim: G has a maximal independent
set of size k if and only if G’ has a strong induced matching of order k.

Suppose D is a maximal independent set of size k in G. Let M’ = {vpv; : v € D} and
D" = {vg : v € D}. Since D is an independent set of G, the matching M’ of G’ is an
induced matching of order k. The condition that D is dominating in G easily implies that D’
is dominating in G’. Thus G’ contains a strong induced matching (M’, D) of order k.

Conversely, suppose that G’ contains a strong induced matching (M’, D') of order k. Define
D={veV(G) : vge D orwv € D'}. Clearly, |D| = |D'| = k and D is an independent
dominating set of G. (|

Theorems and together imply Theorem [1.2}(a) and Theorem [1.3](a).

4. MORE ABOUT STRONG INDUCED MATCHINGS

In this section we continue the study of homology classes defined by strong induced match-
ings. First we observe that deciding the existence of such classes in independence complexes
of arbitrary graphs is computationally hard.

Proposition 4.1. The problem of deciding, given an arbitrary graph G, whether G has any
strong induced matching, is NP-complete.

Proof. The problem is clearly in NP. To prove that it is also NP-hard we construct a reduction
from 3SAT. An instance Z of 3SAT has clauses C,...,C,, and variables vy,...,v,. We may
assume that no variable appears in the same clause both positively and negatively. We write
v; for the negation of v;.

Given an instance Z of 3SAT, we construct a graph G as follows. The vertex set of G
is {c1,...,¢m,y V1,...,Vn,U1,...,0,}. There are edges v177,...,v,U, and there is an edge
between v; and ¢; if the literal v; appears in the clause C;, while there is an edge between v;
and ¢; if U; appears in Cj. Finally, the set {c1,..., ¢} forms a clique. We will prove that Z
has a satisfying truth assignment if and only if G has a strong induced matching.

Suppose that Z has a satisfying truth assignment ¢ : {vi,...,v,} — {true, false}. Define
M ={wnvL,...,v,0,} and D = {v; : ¢(v;) = true} U{w; : ¢(v;) = false}. By construction,
M is an induced matching containing D, and D is an independent set. Since ¢ is a satisfying
truth assignment, every vertex c; is adjacent to at least one vertex of D. It shows that D is
dominating in G, and therefore (M, D) is a s.i.m. in G.
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Conversely, suppose that G has a strong induced matching (M, D). Suppose that D con-
tains some vertex ¢; (since {c1,...,¢cn} is a clique, there can be at most one such ¢;). Let v;
be any variable that appears in C; (rename v; to v; if necessary). Then ¢; is not adjacent to
v; and the maximality of D implies that v; € D. In that case either v;v; € M or vicyy € M
for some j' # j, both contradicting the fact that M is an induced matching. This proves
that DN {cy,...,cn} = 0 which also shows that for each i € {1...n}, either v; or T; belongs
to D but not both. Define a truth assignment ¢ by setting ¢(v;) to true if v; € D, and to
false if v; € D. Since D is dominating, every vertex c; is adjacent to a vertex from D, and so
every clause C; contains a literal which evaluates to true. This shows that Z has a satisfying
assignment and completes the proof. ]

In the remainder of this section we are going to show that the situation is quite different
for chordal graphs.

Theorem 4.2. There is an algorithm which finds a strong induced matching in a chordal
graph G, or decides there is no such matching, in time O(|E(G)|?).

Note that because of Theorem this implies Theorem (b) Observe the contrast with
Theorem where we showed that the problem becomes NP-hard if one asks for a s.i.m. of
a prescribed order.

To construct the algorithm we are going to use the representation of chordal graphs as
intersection graphs of subtrees of a fixed tree. This approach, common in algorithmic graph
theory, has not been used before to study topological properties of chordal graphs, where all
known results exploit the structure of chordal graphs via perfect elimination orderings.

We will now introduce the intersection model. More details can be found in [25] and [14],
Chapter 4]. For every chordal graph G there exists a tree T such that (see Figure

e every node of T is labelled with a subset of V(G),
o for every vertex v € V(G), the nodes of T" which contain v induce a subtree of T,
e vw € E(G) if and only if there is a node of 7" which contains both v and w.

We call any such tree T a tree model of G. In fact a graph is chordal if and only if it has a
tree model. For a chordal graph G a tree model with O(|V(G)|) nodes can be found in linear
time, and henceforth we will always assume that a chordal graph G is given together with
one, fixed tree model T'. The nodes of T" will be denoted with capital letters X,Y,....

Upon selecting an arbitrary node R as the root, we can view T" as a rooted tree. We write
Y < X ifYisadescendant of X and Y < X if Y < X or Y = X. The relation < is a
partial order on the nodes of 7" with the unique largest element R. For a vertex v € V(G)
we denote by top(v) the unique largest node of T containing v. Note that vw € E(G) if and
only if top(v) contains w or top(w) contains v.

If W C V(G) then by removing from T all vertex labels not in W we obtain a tree model
of G[W]. Optionally, one can also remove all empty nodes and get a collection of trees, each
a tree model of one connected component of G[W].

For anode X of T' we write G x for the subgraph of G induced by vertices v with top(v) < X.
Note that G = Gr. Moreover, let Tx be obtained from T by restricting to nodes Y with
Y < X and to vertex labels v with top(v) < X. Then Tx is a tree model of Gx.

A strong induced matching (M, D) with M = {wwv; : i=1,....k} and D = {u; : i=
1,...,k} will be called canonical (with respect to a fixed rooted tree model T') if top(u;) =
top(v;) fori=1,...,k.
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Lemma 4.3. Let G be a chordal graph with a fixed rooted tree model T. If G has a strong
induced matching, then it has a canonical one of the same order.

Proof. If V(G) = 0 then (0, 0) is the only s.i.m. in G, and it is canonical.

Suppose G has at least one vertex and let (M, D) be a s.i.m. in G. Pick any vertex v which
minimizes top(v) with respect to <. Then every vertex u adjacent to v must appear in top(v),
which implies that v is simplicial. Since D is dominating and independent, it must contain
exactly one element x of Ng[v]. Now we perform a local modification which only affects the
edge of M containing x as follows. If xy € M then we set

(M, D\{vjU{y}) ifz=o,
(M \A{zy}U{av}, D) if z#wv.
In either case we get a new s.i.m. (M’, D’) such that

M ={wluM" D' ={u}uD”

(M/’D/) = {

for some u € Ng(v). By minimality of top(v) we have top(u) > top(v). Now (M”,D") is a
sim. in G\ Ng[u]. By induction, it can be replaced with one that is canonical with respect
to the tree model of G \ N¢[u] obtained from 7', and therefore enjoying the same relation <
on its nodes. This ends the proof. ]

Let M(G) denote the set of all canonical strong induced matchings in G (of all orders). If
(M,D),(M',D") € M(G) then we write (M, D) < (M', D) if for every u € D there exists
u' € D' such that top(u) < top(u’). That makes (M(G), <) a pre-order. As we will see in
the proof of Theorem whenever this pre-order is non-empty, it has a largest element (not
necessarily unique).

If D contains a vertex w such that top(u) = R then (M, D) is automatically a largest
element of (M(G),=<). We will call such (M, D) rooted.

We can now describe the algorithm. It proceeds bottom—up along the rooted tree model of
G and for each node X it finds some largest, with respect to <, canonical s.i.m. in Gx. We
assume that the answer has already been computed for all Gy with Y < X. The final answer
is obtained for X = R, the root of the tree.

Theorem 4.4. Algorithm 1| returns a largest element of (M(Gx), =) or returns NONE if
Gx has no strong induced matching.

Proof. First we will show that if Gx has a rooted s.i.m. then Algorithm [1] will exit with an
answer in line 8. Any s.i.m. returned in line 8 is canonical and rooted, and therefore a largest
element of (M(Gx), 2).

Let M" = {uv}UM"” and D' = {u} UD" be a canonical s.i.m. in Gx such that top(u) = X.
Then (M”,D") is a canonical s.im. in Gx \ (N[u] U N[v]) = Gy, U --- U Gy,. Note that
there are no edges between different subgraphs Gy,. It follows that each Gy, has a s.i.m.
(M(Gy;) # 0) and M" =M/, D" = |J D/, where (M, D) is a canonical s.i.m. in Gy,.
Let us show that the pair (M, D) defined in line 7 is a s.i.m. in Gx. The only non-trivial
fact is that D is dominating in Gx. Pick any vertex z € V(Gx). If zu € E(Gx) then we
are done. If top(x) <Y; for some i then z € V(Gy;) and z is adjacent to some element of
D; by the definition of (M;, D;). In all other cases, since (M’, D’) is a sim. in Gx, x must
be adjacent to some y € D}. Since (M;, D;) is a largest element of (M(Gy;), <), there is a
vertex z € D; such that top(z) > top(y). Since = appears in the node top(y) and it appears
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Algorithm 1 Strong induced matching in a chordal graph

Input: A chordal graph G with a rooted tree model T" and a node X of T.
Output: A largest element of (M(Gx), <) or NONE if M(Gx) = 0.

1. if V(Gx) = () then return (0, 0)

2: for all wv € F(Gx) with top(u) = X do

3:  delete the nodes containing u or v from T’y

4:  let Yi,...,Y, be the roots of the resulting forest

5. if M(Gy,) # 0 for all i then

6: let (M;, D;) be a largest element of (M(Gy;), <)

7: let M ={(u,v)}UMU---UMs, D={u}UD;U---UDjs
8: if (M, D) is a s.im. in Gx then return (M, D)

9: end if

10: end for

11: let Z7,...,Z; be the children of X in T'

12: if M(Gyz,) # 0 for all i then

13 let (M;, D;) be some largest element of (M(Gz,), <)
14: let M =My U---UM;, D=D1U---U Dy

15.  if (M, D) is a s.i.m. in Gx then return (M, D)

16: end if

17: return NONE

in some node outside Ty, because top(z) A Y;, it must also appear in top(z). It means that
xz € E(Gx), and we are done also in this case.

We showed that if the algorithm reaches line 11 then G'x does not have a rooted s.i.m. It
means that every canonical s.i.m. in Gx contains only vertices v with top(v) < X.

Suppose now that Gx has some non-rooted canonical s.i.m. (M’, D). Since there are no
edges between different subgraphs Gz, and Gz, of Gx, we have (M', D') = J(M], D;), where
(M, D}) is a canonical s.i.m. of Gz,. Let (M;, D;) and (M, D) be the pairs found in line 14
of the algorithm. To show that (M, D) is a s.i.m. in Gx we need to verify only that D is
dominating in Gx. Pick any vertex x € V(Gx). If top(z) < Z; for some ¢ then x is adjacent
to an element of D; by definition of (M;, D;). If, on the other hand, top(z) = X then zx is
adjacent to some element y € D! because (M’, D) is a sim. in Gx. We find z € D; so that
top(z) > top(y) and conclude that xz € E(Gx) as before. It shows that (M, D) is a canonical
s.im. in Gy. Since (M;, D;) = (M/, D}) in M(Gy,), we have (M, D) > (M’',D’) in M(Gx).
As (M’,D') was arbitrary that proves that the pair (M, D) returned in line 15 is a largest
element of (M(Gx), 2).

It follows that the algorithm returns NONE if and only if M(Gx) = ), which ends the
proof. O

To complete the proof of Theorem it remains to bound the total running time of
Algorithm [I] invoked bottom—up for all nodes X of T. Suppose G has n vertices and m edges.
Then testing if a particular pair (M, D) is a s.i.m. can be done in time O(m). Every edge of
G is processed exactly once in line 2 and the number of nodes of T is O(n). That means the
running time is O(m? + nm) = O(m?) as required.
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5. OPEN PROBLEMS

It would be interesting to prove that other variants of the homology problem are also
NP-hard when K is given by maximal faces or when K = CI(G) is given as the graph G.
In particular, the homological dimension problem asks if fIZ(K ) =2 0 for all ¢ > ¢ and the
homological connectivity problem asks if I:TZ(K ) 20 for all i« < ¢. The complexity status of
these questions is open.

In the case of independence complexes of chordal graphs Theorem reduces the above
questions to the problem of finding a strong induced matching of maximal, resp. minimal
order. Even the complexity of those special cases is open.

In the geometric context we conjecture that the homology problem remains NP-hard for
clique complexes of Rips graphs of finite subsets of R2.

Acknowledgements. We thank Martin Tancer, Russ Woodroofe, Tamal Dey, Matthias
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