Clique complexes vs. Graph powers

Michał Adamaszek

Warwick Mathematics Institute and DIMAP
M.J.Adamaszek@warwick.ac.uk

Combinatorial algebraic topology

Graphs and their powers

Let G be a finite connected graph. The r-th distance power of G is a graph G^{r} with the same vertex set in which two vertices are adjacent if their distance in G is at most r We have a sequence of graph inclusions
$G \hookrightarrow G^{2} \hookrightarrow G^{3} \hookrightarrow$
which stabilize at the complete graph.
Example. For the 6-cycle the inclusion $C_{6} \hookrightarrow C_{6}^{2}$ is

Clique complexes

Various simplicial constructions encode topologically the global combinatorial structure of G, for example

- The clique complex $\mathrm{Cl}(G)$ is a simplicial complex whose faces are the complete subgraphs of G
- The independence complex $\operatorname{Ind}(G)$ is a simplicial com plex whose faces are the independent sets of G
Example. The clique complex $\mathrm{Cl}\left(C_{6}^{2}\right)$ is the union

of two disks glued along the boundary, that is S

Bringing the two together

The space $\mathrm{Cl}\left(G^{r}\right)$ is the Vietoris-Rips complex of subsets of diameter at most r in G.

- Problem 1. What are the interesting features of the spaces $\mathrm{Cl}\left(G^{r}\right)$ for higher r ?
- Problem 2. What are the interesting features of the in duced inclusions

$$
\mathrm{Cl}(G) \hookrightarrow \mathrm{Cl}\left(G^{2}\right) \hookrightarrow \mathrm{Cl}\left(G^{3}\right) \hookrightarrow \cdots \quad ?
$$

Warm-up exercise. Prove that the induced map of funda mental groups

$$
\pi_{1}(\mathrm{Cl}(G)) \rightarrow \pi_{1}\left(\mathrm{Cl}\left(G^{r}\right)\right)
$$

is surjective.
\square

When is $i: \mathrm{Cl}(G) \hookrightarrow \mathrm{Cl}\left(G^{2}\right)$ a homotopy equivalence?

The most general condition we provide is
Every maximal clique in G^{2} (i.e. every maximal face of $\mathrm{Cl}\left(G^{2}\right)$) has the form $N_{G}[v]$ (it is spanned by a vertex v of G together with all its neighbours in G).
Sketch of proof. The simplices $N_{G}[v]$ form a covering of $\mathrm{Cl}\left(G^{2}\right)$ and all their nonempty intersections $X_{v_{1}, \ldots, v_{k}}=N_{G}\left[v_{1}\right] \cap \cdots \cap N_{G}\left[v_{k}\right]$ are contractible. One shows that $i^{-1}\left(X_{v_{1}, \ldots, v_{k}}\right)$ are also contractible (in fact cones) and a Mayer-Vietoris type argument shows i is a weak equivalence.
The condition is violated for example by the cliques $\{i, i+2, i+4\}$ in C_{6}^{2} above.
Some special cases of this result include:

G has girth at least 7.

More generally: for any r, if G has girth at least $3 r+1$ then $\mathrm{Cl}\left(G^{r}\right)$ collapses to $\mathrm{Cl}(G)$ which, since G is triangle-free, is just G
G is
(it does not have either of the four graphs as an induced subgraph.)

Universality

For every $r \geq 1$ and every finite simplicial complex K there exists a graph G with a homotopy equivalence

$$
\mathrm{Cl}\left(G^{r}\right) \simeq K
$$

- A folklore result when $r=1$, even with a homeomorphism $K \equiv \mathrm{Cl}(G)$ for $G=(\operatorname{bd} K)^{(1)}$, the 1-skeleton of the barycentric subdivision of K.
- For $r \geq 2$ we use $G=\left(\mathrm{bd}^{s} K\right)^{(1)}$, the 1-skeleton of a large iterated subdivision (roughly $s=O(\log r)$).
- Cover $\mathrm{Cl}\left(G^{r}\right)$ with subcomplexes $\mathrm{Cl}\left(\left(G_{v}\right)^{r}\right)$ where G_{v} consists o the vertices which belong to the open star of v in K (see fig.).
- Dochtermann proved G_{v} is dismantlable. It follows also for $\left(G_{v}\right)^{r}$ so the covering complexes $\mathrm{Cl}\left(\left(G_{v}\right)^{r}\right)$ are contractible. An analy sis of the intersections of G_{v} and the nerve lemma do the rest.

Another representation, which is off by just some 2-cells, comes from an equivalence

$$
\mathrm{Cl}\left(\left(\operatorname{sd}^{(r-1)} G\right)^{r}\right) \simeq \mathrm{Cl}(G) \vee \bigvee^{(r-1) \mathrm{t}(G)} S^{2} \quad \begin{aligned}
& \bullet \mathrm{t}(G)-\text { number of triangles in } G \\
&
\end{aligned} \begin{aligned}
& \bullet \mathrm{sd}^{(r-1)} G-\text { an edge-subdivision of } G \text { by } \\
& r-1 \text { new vertices on each edge }
\end{aligned}
$$

The first example: cycles

We want to know the homotopy types of

CI(C)

With the parameter $k=n-2 r-1$ consider the complements $T_{n, k}=\overline{C_{n}^{r}}$ known as the circular complete graphs.

$$
T_{9,2}=\overline{C_{9}^{3}} \quad T_{14,3}=\overline{C_{14}^{5}}
$$

So the equivalent question is to identify

$\operatorname{Ind}\left(\mathrm{T}_{\mathrm{n}, \mathrm{k}}\right)$

Since $T_{n, k}$ are triangle-free we can exhibit their independence complexes $\operatorname{Ind}\left(T_{n, k}\right)$ as suspensions:

1) Every maximal independent set contains 0 or its neighbour:

$$
\operatorname{Ind}\left(T_{n, k}\right)=\operatorname{st}(0) \cup \bigcup_{w \in N(0)} \operatorname{st}(w) .
$$

2) Since the vertex 0 is not in any triangle, $N(0)$ is a simplex in $\operatorname{Ind}\left(T_{n, k}\right)$ and both summands are contractible (by a result of Barmak). Therefore

$$
\operatorname{Ind}\left(T_{n, k}\right) \simeq \Sigma K, \text { where } K=\operatorname{st}(0) \cap \bigcup_{w \in N(0)} \operatorname{st}(w)
$$

3) The constraints defining K can be encoded in the independence complex of some graph $S_{n, k}$.
4) Steps 1), 2), 3) can be repeated for the new graph $S_{n, k}$. The outcome can be identified with $T_{n-2(k+1), k}$

For example, this process for $T_{14,3}$ is

In general:
For $n \geq 3 k+3$ the independence complexes of circular complete graphs satisfy
$\operatorname{Ind}\left(T_{n, k}\right) \simeq \Sigma^{2} \operatorname{Ind}\left(T_{n-2(k+1), k}\right)$.
\square
For $\frac{n}{3} \leq r<\frac{n}{2}$ the clique complexes $\mathrm{Cl}\left(C_{n}^{r}\right)$ of cycle powers satisfy

$$
\mathrm{Cl}\left(C_{n}^{r}\right) \simeq \Sigma^{2} \mathrm{Cl}\left(C_{4 r-n}^{3 r-n}\right)=\Sigma^{2} \mathrm{Cl}\left(C_{n-2 \cdot(n-2 r)}^{r-1 \cdot(n-2 r)}\right) .
$$

It means that all $\mathrm{Cl}\left(C_{n}^{r}\right)$ are generated by the double sus pension operator Σ^{2}, acting along lines of slope $(2,1)$, as shown by the arrows \qquad below.

```
For any \(n \geq 3\) and \(0 \leq r<\frac{n}{2}\)
\(\mathrm{Cl}\left(C_{n}^{r}\right) \simeq \begin{cases}\bigvee^{n-2 r-1} S^{2 l} & \text { if } r=\frac{l}{2 l+1} \\ S^{2 l+1} & \text { if } \frac{l}{2 l+1} n<\end{cases}\)
\[
n \text { for some } l \geq 0 .
\]
```


- D.Kozlov, Combinatorial algebraic topology, Springer 2008
- M.Adamaszek, Clique complexes vs. graph powers, arxiv/1104.0433

