

equivalence.

G is

G has girth at least 7.

Some special cases of this result include:

since G is triangle-free, is just G.

Clique complexes vs. Graph powers

Michał Adamaszek

Warwick Mathematics Institute and DIMAP M.J.Adamaszek@warwick.ac.uk

Combinatoria	l algebraic	topology
--------------	-------------	----------

Graphs and their powers

Let *G* be a finite connected graph. The *r*-th *distance power* of G is a graph G^r with the same vertex set in which two vertices are adjacent if their distance in G is at most r. We have a sequence of graph inclusions

 $G \hookrightarrow G^2 \hookrightarrow G^3 \hookrightarrow \cdots$

which stabilize at the complete graph. **Example.** For the 6-cycle the inclusion $C_6 \hookrightarrow C_6^2$ is

Clique complexes

Various simplicial constructions encode topologically the global combinatorial structure of G, for example:

- The clique complex Cl(G) is a simplicial complex whose faces are the complete subgraphs of G.
- The independence complex Ind(G) is a simplicial complex whose faces are the independent sets of G.

Example. The clique complex $Cl(C_6^2)$ is the union

of two disks glued along the boundary, that is S^2 .

Bringing the two together

The space $Cl(G^r)$ is the *Vietoris-Rips complex* of subsets of diameter at most r in G.

- Problem 1. What are the interesting features of the spaces $Cl(G^r)$ for higher *r*?
- Problem 2. What are the interesting features of the induced inclusions

$$\operatorname{Cl}(G) \hookrightarrow \operatorname{Cl}(G^2) \hookrightarrow \operatorname{Cl}(G^3) \hookrightarrow \cdots$$
?

Warm-up exercise. Prove that the induced map of fundamental groups

 $\pi_1(\operatorname{Cl}(G)) \to \pi_1(\operatorname{Cl}(G^r))$

is surjective.

Stability

Every maximal clique in G^2 (i.e. every maximal face of $Cl(G^2)$) has the form $N_G[v]$

Sketch of proof. The simplices $N_G[v]$ form a covering of $Cl(G^2)$ and all their nonempty in-

tersections $X_{v_1,...,v_k} = N_G[v_1] \cap \cdots \cap N_G[v_k]$ are contractible. One shows that $i^{-1}(X_{v_1,...,v_k})$ are

also contractible (in fact cones) and a Mayer-Vietoris type argument shows *i* is a weak

More generally: for any r, if G has girth at least 3r + 1 then $Cl(G^r)$ collapses to Cl(G) which,

(it is spanned by a vertex v of G together with all its neighbours in G).

The condition is violated for example by the cliques $\{i, i+2, i+4\}$ in C_6^2 above.

(it does not have either of the four graphs as an induced subgraph.)

When is $i : Cl(G) \hookrightarrow Cl(G^2)$ a homotopy equivalence? homotopy equivalence The most general condition we provide is

For every $r \ge 1$ and every finite simplicial complex K there exists a graph G with a

 $\operatorname{Cl}(G^r) \simeq K.$

Universality

- A folklore result when r = 1, even with a homeomorphism $K \equiv Cl(G)$ for $G = (bdK)^{(1)}$, the 1-skeleton of the *barycentric subdivision* of *K*.
- For $r \ge 2$ we use $G = (bd^s K)^{(1)}$, the 1-skeleton of a large iterated subdivision (roughly $s = O(\log r)$).
- Cover $Cl(G^r)$ with subcomplexes $Cl((G_v)^r)$ where G_v consists of the vertices which belong to the open star of v in K (see fig.).
- Dochtermann proved G_v is *dismantlable*. It follows also for $(G_v)^r$, so the covering complexes $Cl((G_v)^r)$ are contractible. An analysis of the intersections of G_{v} and the *nerve lemma* do the rest.

Another representation, which is off by just some 2-cells, comes from an equivalence

$$\operatorname{Cl}((\operatorname{sd}^{(r-1)}G)^r) \simeq \operatorname{Cl}(G) \lor \bigvee^{(r-1)\operatorname{t}(G)} S^2$$

• t(G) – number of triangles in G • $sd^{(r-1)}G$ – an edge-subdivision of G by r-1 new vertices on each edge

 S^1

Since $T_{n,k}$ are triangle-free we can exhibit their independence complexes $Ind(T_{n,k})$ as suspensions:

1) Every maximal independent set contains 0 or its neighbour:

 $\operatorname{Ind}(T_{n,k}) = \operatorname{st}(0) \cup \bigcup \operatorname{st}(w).$ $w \in N(0)$

2) Since the vertex 0 is not in any triangle, N(0) is a simplex in $Ind(T_{n,k})$ and both summands are contractible (by a result of Barmak). Therefore

> Ind $(T_{n,k}) \simeq \Sigma K$, where $K = \operatorname{st}(0) \cap [] \operatorname{st}(w)$ $w \in N(0)$

3) The constraints defining K can be encoded in the independence complex of some graph $S_{n,k}$.

4) Steps 1), 2), 3) can be repeated for the new graph $S_{n,k}$. The outcome can be identified with $T_{n-2(k+1),k}$.

• J.A.Barmak, Star clusters in independence complexes of graphs, arxiv/1007.0418 • A.Dochtermann, The universality of Hom complexes of graphs, Combinatorica 29 (4) (2009) 433-448 • D.Kozlov, Combinatorial algebraic topology, Springer 2008 • M.Adamaszek, Clique complexes vs. graph powers, arxiv/1104.0433