Root and root finding are concepts familiar to most branches of mathematics.

Square roots and higher roots of graphs

Anna Adamaszek, Michał Adamaszek

DIMAP, University of Warwick, UK

Powers and roots of graphs

Definition

If H is a graph, its r-th power $G=H^{r}$ is the graph on the same vertex set such that two distinct vertices are adjacent in G if their distance in H is at most r. We call H the r-th root of G.

Powers and roots of graphs

Definition

If H is a graph, its r-th power $G=H^{r}$ is the graph on the same vertex set such that two distinct vertices are adjacent in G if their distance in H is at most r. We call H the r-th root of G.

Problems related to graph roots

- Does G have an r-th root?
- How to compute the r-th root?
- Is the r-th root of G unique?

Problems related to graph roots

- Does G have an r-th root?
- How to compute the r-th root?
- Is the r-th root of G unique?

Another formulation

We know the balls $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?

Problems related to graph roots

- Does G have an r-th root?
- How to compute the r-th root?
- Is the r-th root of G unique?

Another formulation

We know the balls $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?

Theorem (Motwani, Sudan '94, Le, Nguyen '09)

It is NP-complete to decide if G has a square/r-th root.

Tree roots

Lin,Skiena '95, Kearney, Corneil '98, Chang, Ko,Lu '06 r-th tree roots can be found in linear time.

Lin,Skiena '95, Kearney, Corneil '98, Chang, Ko,Lu '06

r-th tree roots can be found in linear time.
Warning! Very non-unique for $r \geq 3$!

are both 3-rd roots of the complete graph!

Large-girth roots

Definition

The girth of a graph is the length of its shortest cycle.

Farzad,Lau,Le, Tuy '09

- Square roots of girth at least 6 can be found in poly-time.

Large-girth roots

Definition

The girth of a graph is the length of its shortest cycle.

Farzad,Lau,Le, Tuy '09

- Square roots of girth at least 6 can be found in poly-time.
- Square roots of girth at least $5 \ldots$????

Large-girth roots

Definition

The girth of a graph is the length of its shortest cycle.

Farzad,Lau,Le,Tuy '09

- Square roots of girth at least 6 can be found in poly-time.
- Square roots of girth at least 5 ... ????
- Square roots of girth at least 4 are NP-hard to find.

Large-girth roots

Definition

The girth of a graph is the length of its shortest cycle.

Farzad,Lau,Le, Tuy '09

- Square roots of girth at least 6 can be found in poly-time.
- Square roots of girth at least 5 ... ????
- Square roots of girth at least 4 are NP-hard to find.

AA,MA '09

- r-th roots of girth at least $2 r+3$ can be found in poly-time.
- Square roots of girth at least $r+2$ are NP-hard to find.

How it works

Task. We know $B_{x}=B_{r}(x)$ for for each vertex $x \in H$. What can we say about H ?
Assumption. H has girth $\geq 2 r+3$.

How it works

Task. We know $B_{x}=B_{r}(x)$ for for each vertex $x \in H$. What can we say about H ?
Assumption. H has girth $\geq 2 r+3$.

- Miracle 1.

How it works

Task. We know $B_{x}=B_{r}(x)$ for for each vertex $x \in H$. What can we say about H ?
Assumption. H has girth $\geq 2 r+3$.

- Miracle 1.

- Miracle 2. We can compute all r-th roots of the core, and there is linearly many of them.

How it works

Task. We know $B_{x}=B_{r}(x)$ for for each vertex $x \in H$. What can we say about H ?
Assumption. H has girth $\geq 2 r+3$.

- Miracle 1.

- Miracle 2. We can compute all r-th roots of the core, and there is linearly many of them.
- Miracle 3. Given each core we can attach the trees in the right places.

Roots with no leaves

Task: We know $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?
Assumption: H has girth $\geq 2 r+3$ and no leaves.

Roots with no leaves

Task: We know $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?
Assumption: H has girth $\geq 2 r+3$ and no leaves.

Technique: start locally

- assume $x y$ is an edge in H,

Roots with no leaves

Task: We know $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?
Assumption: H has girth $\geq 2 r+3$ and no leaves.

Technique: start locally

- assume $x y$ is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from the balls B_{v}.

Roots with no leaves

Task: We know $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?
Assumption: H has girth $\geq 2 r+3$ and no leaves.

Technique: start locally

- assume $x y$ is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from the balls B_{v}.

Roots with no leaves

Task: We know $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?
Assumption: H has girth $\geq 2 r+3$ and no leaves.

Technique: start locally

- assume $x y$ is an edge in H,
- Submiracle! in one step compute all the neighbours
 of x using information from the balls B_{v}.

Roots with no leaves

Task: We know $B_{x}=B_{r}(x)$ for each vertex $x \in H$. What can we say about H ?
Assumption: H has girth $\geq 2 r+3$ and no leaves.

Technique: start locally

- assume $x y$ is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from
 the balls B_{v}.

The submiracle explained

- $B_{x} \cup B_{y}$ is a tree
- the leaves are $B_{x} \backslash B_{y}$ and $B_{y} \backslash B_{x}$
- goal: find N_{x}

The submiracle explained

- The set $\mathcal{R}=\bigcup_{v \in B_{y} \backslash B_{x}} B_{v}$ is marked in red

The submiracle explained

- $\mathcal{R}=\bigcup_{v \in B_{y} \backslash B_{x}} B_{v}$
- $\mathcal{G}=B_{x} \cap B_{y} \backslash \mathcal{R} \backslash\{x\}$
- $N_{x} \subseteq \mathcal{G}$

The submiracle explained

- $\mathcal{R}=\bigcup_{v \in B_{y} \backslash B_{x}} B_{v}$
- $\mathcal{G}=B_{x} \cap B_{y} \backslash \mathcal{R} \backslash\{x\}$
- $\mathcal{B}=B_{x} \cap B_{y} \cap \bigcup_{v \in \mathcal{G}} B_{v}$

The submiracle explained

- $\mathcal{R}=\bigcup_{v \in B_{y} \backslash B_{x}} B_{v}$
- $\mathcal{G}=B_{x} \cap B_{y} \backslash \mathcal{R} \backslash\{x\}$
- $\mathcal{B}=B_{x} \cap B_{y} \cap \bigcup_{v \in \mathcal{G}} B_{v}$
- $N_{x}=B_{x} \cap B_{y} \cap \bigcap_{v \in \mathcal{B}} B_{v} \backslash\{x\}$ - neighbours of x

If we had an algorithm...

Input: G
Output:
a graph H, of girth at least 5 , such that $H^{2}=G$

If we had an algorithm...

Input: G
Output:

$$
\text { a graph } H \text {, of girth at least } 5 \text {, such that } H^{2}=G
$$

Input: K_{n}

Output:

If we had an algorithm...

Input: G
Output:

$$
\text { a graph } H \text {, of girth at least } 5 \text {, such that } H^{2}=G
$$

Input: K_{n}

Output:

If we had an algorithm...

Input: G

Output:
a graph H, of girth at least 5 , such that $H^{2}=G$

Input: K_{n}

Output:

- a graph H of diameter 2 and girth 5

Cycle C_{5}

$|V|=5=2^{2}+1,2$-regular, girth $=5$, diam $=2$

Petersen graph

$$
|V|=10=3^{2}+1,3 \text {-regular, girth }=5, \text { diam }=2
$$

Hoffman-Singleton graph

$$
|V|=50=7^{2}+1,7 \text {-regular, girth }=5, \text { diam }=2
$$

A mysterious (57, 5)-cage

$$
|V|=3250=57^{2}+1,57 \text {-regular, girth }=5, \text { diam }=2
$$

If we had an algorithm...

Input: G
Output:
a graph H, of girth at least 5 , such that $H^{2}=G$

If we had an algorithm...

Input: G

Output:

$$
\text { a graph } H \text {, of girth at least } 5 \text {, such that } H^{2}=G
$$

Input: K_{3250}

Output:

The mysterious $(57,5)$-cage (a 57-regular graph with diam $=2$, girth $=5$ and 3250 vertices).

Uniqueness of square roots

Ross,Harary '60

The tree square root of a graph is unique up to iso.

Uniqueness of square roots

Ross,Harary '60

The tree square root of a graph is unique up to iso.

Uniqueness of square roots

Ross,Harary '60

The tree square root of a graph is unique up to iso.

Farzad,Lau,Le, Tuy '09

The square root of girth ≥ 7 of a graph is unique up to iso.

Uniqueness of square roots

Ross,Harary '60

The tree square root of a graph is unique up to iso.

Farzad,Lau,Le, Tuy '09

The square root of girth ≥ 7 of a graph is unique up to iso.

AA,MA '10

The square root of girth ≥ 6 of a graph is unique up to iso.

Uniqueness of square roots

Ross,Harary '60

The tree square root of a graph is unique up to iso.

Farzad,Lau,Le, Tuy '09

The square root of girth ≥ 7 of a graph is unique up to iso.

AA,MA '10

The square root of girth ≥ 6 of a graph is unique up to iso.

Stop!

The square root of girth ≥ 5 of a graph may not be unique.

Uniqueness of square roots with no leaves

Levenshtein et.al. '08
The square root of girth ≥ 7 and no leaves of a graph is unique.

Uniqueness of square roots with no leaves

Levenshtein et.al. '08

The square root of girth ≥ 7 and no leaves of a graph is unique.

Stop!

False for girth ≥ 6.

OK, what about higher roots?

CONJECTURE, Levenshtein '08

The r-th root of girth $\geq 2 r+3$ and no leaves of a graph is unique.

OK, what about higher roots?

CONJECTURE, Levenshtein '08

The r-th root of girth $\geq 2 r+3$ and no leaves of a graph is unique.
Levenshtein '08
The r-th root of girth $\geq 2.5 r$ and no leaves of a graph is unique.

OK, what about higher roots?

CONJECTURE, Levenshtein '08

The r-th root of girth $\geq 2 r+3$ and no leaves of a graph is unique.

Levenshtein '08

The r-th root of girth $\geq 2.5 r$ and no leaves of a graph is unique.

AA,MA '09; Miracle 2

Each G has at most $O(|G|) r$-th roots of girth $\geq 2 r+3$ and no leaves.

Root and root finding are concepts familiar to most branches of mathematics.

