Root and *root finding* are concepts familiar to most branches of mathematics.

Square roots and higher roots of graphs

Anna Adamaszek, Michał Adamaszek

DIMAP, University of Warwick, UK

If *H* is a graph, its *r*-th power $G = H^r$ is the graph on the same vertex set such that two distinct vertices are adjacent in *G* if their distance in *H* is at most *r*. We call *H* the *r*-th root of *G*.

If *H* is a graph, its *r*-th power $G = H^r$ is the graph on the same vertex set such that two distinct vertices are adjacent in *G* if their distance in *H* is at most *r*. We call *H* the *r*-th root of *G*.

Problems related to graph roots

- Does G have an r-th root?
- How to compute the *r*-th root?
- Is the *r*-th root of *G* unique?

Problems related to graph roots

- Does G have an r-th root?
- How to compute the *r*-th root?
- Is the *r*-th root of *G* unique?

Another formulation

We know the balls $B_x = B_r(x)$ for each vertex $x \in H$. What can we say about H?

Problems related to graph roots

- Does G have an r-th root?
- How to compute the *r*-th root?
- Is the *r*-th root of *G* unique?

Another formulation

We know the balls $B_x = B_r(x)$ for each vertex $x \in H$. What can we say about H?

Theorem (Motwani, Sudan '94, Le, Nguyen '09)

It is NP-complete to decide if G has a square/r-th root.

Lin, Skiena '95, Kearney, Corneil '98, Chang, Ko, Lu '06

r-th tree roots can be found in linear time.

Lin, Skiena '95, Kearney, Corneil '98, Chang, Ko, Lu '06

r-th tree roots can be found in linear time.

Warning! Very non-unique for $r \ge 3!$

are both 3-rd roots of the complete graph!

The *girth* of a graph is the length of its shortest cycle.

Farzad, Lau, Le, Tuy '09

• Square roots of girth at least 6 can be found in poly-time.

The *girth* of a graph is the length of its shortest cycle.

Farzad, Lau, Le, Tuy '09

- Square roots of girth at least 6 can be found in poly-time.
- Square roots of girth at least 5 ... ????

The *girth* of a graph is the length of its shortest cycle.

Farzad, Lau, Le, Tuy '09

- Square roots of girth at least 6 can be found in poly-time.
- Square roots of girth at least 5 ... ????
- Square roots of girth at least 4 are NP-hard to find.

The *girth* of a graph is the length of its shortest cycle.

Farzad, Lau, Le, Tuy '09

- Square roots of girth at least 6 can be found in poly-time.
- Square roots of girth at least 5 ... ????
- Square roots of girth at least 4 are NP-hard to find.

AA, MA '09

- *r*-th roots of girth at least 2r + 3 can be found in poly-time.
- Square roots of girth at least r + 2 are NP-hard to find.

Task. We know $B_x = B_r(x)$ for for each vertex $x \in H$. What can we say about H?

Assumption. *H* has girth $\geq 2r + 3$.

Task. We know $B_x = B_r(x)$ for for each vertex $x \in H$. What can we say about H?

Assumption. *H* has girth $\geq 2r + 3$.

• Miracle 1.

Task. We know $B_x = B_r(x)$ for for each vertex $x \in H$. What can we say about H?

Assumption. *H* has girth $\geq 2r + 3$.

• Miracle 1.

• Miracle 2. We can compute *all r*-th roots of the core, and there is linearly many of them.

Task. We know $B_x = B_r(x)$ for for each vertex $x \in H$. What can we say about H?

Assumption. *H* has girth $\geq 2r + 3$.

• Miracle 1.

- Miracle 2. We can compute *all r*-th roots of the core, and there is linearly many of them.
- Miracle 3. Given each core we can attach the trees in the right places.

Technique: start locally

• assume xy is an edge in H,

- assume xy is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from the balls B_y .

- assume xy is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from the balls B_y .

- assume xy is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from the balls B_y .

- assume xy is an edge in H,
- Submiracle! in one step compute all the neighbours of x using information from the balls B_y .

- $B_x \cup B_y$ is a tree
- the leaves are $B_x \setminus B_y$ and $B_y \setminus B_x$
- goal: find N_{x}

• The set $\mathcal{R} = \bigcup_{v \in B_v \setminus B_x} B_v$ is marked in red

- $\mathcal{R} = \bigcup_{v \in B_y \setminus B_x} B_v$
- $\mathcal{G} = B_x \cap B_y \setminus \mathcal{R} \setminus \{x\}$
- $N_x \subseteq \mathcal{G}$

- $\mathcal{R} = \bigcup_{v \in B_y \setminus B_x} B_v$
- $\mathcal{G} = B_x \cap B_y \setminus \mathcal{R} \setminus \{x\}$
- $\mathcal{B} = B_x \cap B_y \cap \bigcup_{v \in \mathcal{G}} B_v$

Input: G

Output:

a graph H, of girth at least 5, such that
$$H^2 = G$$

$$|V| = 5 = 2^2 + 1$$
, 2-regular, girth=5, diam=2

$$|V| = 10 = 3^2 + 1$$
, 3-regular, girth=5, diam=2

Hoffman-Singleton graph

$|V| = 50 = 7^2 + 1$, 7-regular, girth=5, diam=2

Anna Adamaszek, Michał Adamaszek Square roots and higher roots of graphs

A mysterious (57, 5)-cage

$$|V| = 3250 = 57^2 + 1$$
, 57-regular, girth=5, diam=2

Input: G

Output:

a graph H, of girth at least 5, such that $H^2 = G$

Ross, Harary '60

The tree square root of a graph is unique up to iso.

Ross, Harary '60

The tree square root of a graph is unique up to iso.

Ross, Harary '60

The tree square root of a graph is unique up to iso.

Farzad, Lau, Le, Tuy '09

The square root of girth ≥ 7 of a graph is unique up to iso.

Ross, Harary '60

The tree square root of a graph is unique up to iso.

Farzad, Lau, Le, Tuy '09

The square root of girth ≥ 7 of a graph is unique up to iso.

AA, MA '10

The square root of girth ≥ 6 of a graph is unique up to iso.

Ross, Harary '60

The tree square root of a graph is unique up to iso.

Farzad, Lau, Le, Tuy '09

The square root of girth ≥ 7 of a graph is unique up to iso.

AA, MA '10

The square root of girth ≥ 6 of a graph is unique up to iso.

Stop!

The square root of girth ≥ 5 of a graph may not be unique.

Levenshtein et.al. '08

The square root of girth \geq 7 and no leaves of a graph is unique.

Uniqueness of square roots with no leaves

Levenshtein et.al. '08

The square root of girth \geq 7 and no leaves of a graph is unique.

Stop!

False for girth ≥ 6 .

CONJECTURE, Levenshtein '08

The *r*-th root of girth $\geq 2r + 3$ and no leaves of a graph is unique.

CONJECTURE, Levenshtein '08

The *r*-th root of girth $\geq 2r + 3$ and no leaves of a graph is unique.

Levenshtein '08

The *r*-th root of girth $\geq 2.5r$ and no leaves of a graph is unique.

CONJECTURE, Levenshtein '08

The *r*-th root of girth $\geq 2r + 3$ and no leaves of a graph is unique.

Levenshtein '08

The *r*-th root of girth $\geq 2.5r$ and no leaves of a graph is unique.

AA,MA '09; Miracle 2

Each G has at most O(|G|) r-th roots of girth $\geq 2r + 3$ and no leaves.

Root and *root finding* are concepts familiar to most branches of mathematics.