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Testing probability distributions

Test if a probability distribution has a given property P.

Distribution is accessed by drawing random samples.

Goal: distinguish between

distributions with the property P,
distributions which are far from P

minimizing the number of samples
and with error probability ≤ 1/3.

Examples:

is the distribution uniform?
is it equal to a fixed distr.?
are two distributions identical?
are they independent?
estimate support size etc...
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Classical/typical results

Is a distribution on k points uniform

Õ(
√

k) samples.

Are two distributions on k points close in L1-norm

Õ(k2/3) samples.

Is a distribution on {0, 1, . . . , k} close to monotone

Õ(
√

k) samples.

Is a distribution on [k]× [k] a product of its marginals

Õ(k) samples.

Batu, Fischer, Fortnow, Kumar, Rubinfeld, Smith, White et al.
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Infinite domains

Ω = [0, 1]n

continuous distributions with density f so that

Prf [A] =

∫
A

f dµ.

distributions with atoms

f +
∑

piδxi
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Non-testable properties

Is a distribution continuous, or purely discrete?
Is a continuous distribution uniform or is it ε-far from uniform in
the L1 metric?

“fatten” a discrete distribution on M random points,

up to ∼
√

M draws this looks like a random distribution,

but is very L1-far from uniform.
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A testable property - discreteness on M points

For arbitrary Ω distinguish between

f =
M∑
i=1

piδxi

for some x1, . . . , xM ,

Prf [A] < 1− ε

for any set A ⊂ Ω of size M.
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A testable property - discreteness on M points

Tester for discreteness on M points:

Take 2M/ε random samples

If there are ≤ M distinct values accept.

If there are > M distinct values reject.

Lower bound Ω(M1−o(1)) follows from bounds for estimating
distribution support size (eg. Raskhodnikova et al’09, Valiant’08).
Match these bounds?
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Monotone distributions and uniformity

Find a class of distributions for which being uniform is testable.

Ω = [0, 1]n

The density f is monotone if f (x) ≤ f (y) whenever xi ≤ yi

for all i .

Given a distribution with monotone density f ,

Is f the uniform distribution U?

Or is it ε-far from U in the L1 metric

d(f , g) =
1

2

∫
Ω
|f − g |.
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Discrete vs. continuous cubes

Rubinfeld, Servedio’05

Testing uniformity of monotone distributions on the boolean cube
{0, 1}n with L1 distance

Is possible with O(n log(n/ε)/ε2) samples.

Requires Ω(n/ log2 n) samples.

Our result

Testing uniformity of monotone distributions on the real cube
[0, 1]n with L1 distance

Is possible with O(n/ε2) samples.

Michal Adamaszek Testing Monotone Continuous Distributions



Introduction
Monotone distributions

Conclusions

Discrete vs. continuous cubes

Rubinfeld, Servedio’05

Testing uniformity of monotone distributions on the boolean cube
{0, 1}n with L1 distance

Is possible with O(n log(n/ε)/ε2) samples.

Requires Ω(n/ log2 n) samples.

Our result

Testing uniformity of monotone distributions on the real cube
[0, 1]n with L1 distance

Is possible with O(n/ε2) samples.

Michal Adamaszek Testing Monotone Continuous Distributions



Introduction
Monotone distributions

Conclusions

1/6 1/4

1/4 1/3

1/6 1/4

1/4 1/3

lower bound → lower bound
upper bound ← upper bound
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Tester

Idea: estimate ‖x‖1 = x1 + x2 + . . .+ xn.

If U is the uniform distribution then

EU [‖x‖1] =
n

2
.

Theorem

If f is a monotone distribution, ε-far from uniform then

Ef [‖x‖1] ≥ n

2
+
ε

2
.
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Tester

Ω = [0, 1]n, f - unknown monotone distribution.

Draw C samples x1, . . . , xC ,

Ẽ =
1

C

∑
‖xi‖1.

If Ẽ > n
2 + ε

4 say ε far from uniform.

If Ẽ ≤ n
2 + ε

4 say uniform.

C = 40n/ε2 is good (use Feige’s inequality).
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A word on the proof

Ef [‖x‖1] ≥ n

2
+
ε

2
.

or ∫
Ω
‖x‖1g(x)dx ≥ 1

4

∫
Ω
|g(x)|dx

for
∫

Ω g(x)dx = 0, g : [0, 1]n → R - monotone.

∫ 1

0
t · g(t)dt =

1

4

∫
t,s
|g(t)− g(s)|dsdt − 1

2

∫ 1

0
g(t)dt

If g is a function defined on the vertices of a boolean cube∑
diagonals

|g(u)− g(v)| ≤
∑
edges

|g(u)− g(v)|.
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Conclusions

We can test if a monotone distribution on [0, 1]n is uniform.

Same for monotone distributions on {0, 1, . . . , k}n.

Other testable classes of distributions?

Other closeness measures instead of L1?
Earth-mover distance? (Ba, Nguyen, Nguyen, Rubinfeld ’09)
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