Testing Monotone Continuous Distributions on High-dimensional Real Cubes

Michal Adamaszek

DIMAP, University of Warwick

Joint work with Artur Czumaj and Christian Sohler

Michal Adamaszek Testing Monotone Continuous Distributions

Testing probability distributions

- Test if a probability distribution has a given property \mathcal{P} .
- Distribution is accessed by drawing random samples.

Testing probability distributions

- $\bullet\,$ Test if a probability distribution has a given property $\mathcal{P}.$
- Distribution is accessed by drawing random samples.
- Goal: distinguish between
 - $\bullet\,$ distributions with the property \mathcal{P} ,
 - $\bullet\,$ distributions which are far from ${\cal P}$

Testing probability distributions

- $\bullet\,$ Test if a probability distribution has a given property $\mathcal{P}.$
- Distribution is accessed by drawing random samples.
- Goal: distinguish between
 - $\bullet\,$ distributions with the property \mathcal{P} ,
 - $\bullet\,$ distributions which are far from ${\cal P}$

minimizing the number of samples and with error probability $\leq 1/3$.

Testing probability distributions

- \bullet Test if a probability distribution has a given property $\mathcal{P}.$
- Distribution is accessed by drawing random samples.
- Goal: distinguish between
 - $\bullet\,$ distributions with the property \mathcal{P} ,
 - $\bullet\,$ distributions which are far from ${\cal P}$

minimizing the number of samples and with error probability $\leq 1/3$.

• Examples:

- is the distribution uniform?
- is it equal to a fixed distr.?
- are two distributions identical?
- are they independent?
- estimate support size etc...

Classical/typical results

• Is a distribution on k points uniform

 $\tilde{O}(\sqrt{k})$ samples.

- Are two distributions on k points close in L_1 -norm $\tilde{O}(k^{2/3})$ samples.
- Is a distribution on $\{0, 1, \ldots, k\}$ close to monotone $\tilde{O}(\sqrt{k})$ samples.
- Is a distribution on $[k] \times [k]$ a product of its marginals $\tilde{O}(k)$ samples.

Batu, Fischer, Fortnow, Kumar, Rubinfeld, Smith, White et al.

Infinite domains

Infinite domains

$$\Omega = [0,1]^n$$

Infinite domains

- $\Omega = [0,1]^n$
 - continuous distributions with density f so that

$$\mathbf{Pr}_f[A] = \int_A f \mathrm{d}\mu.$$

Infinite domains

- $\Omega = [0,1]^n$
 - continuous distributions with density f so that

$$\mathsf{Pr}_f[A] = \int_A f \mathrm{d}\mu.$$

distributions with atoms

$$f + \sum p_i \delta_{x_i}$$

Non-testable properties

Non-testable properties

Is a distribution continuous, or purely discrete?

Non-testable properties

Is a distribution continuous, or purely discrete? Is a continuous distribution uniform or is it ϵ -far from uniform in the L_1 metric?

Non-testable properties

Is a distribution continuous, or purely discrete? Is a continuous distribution uniform or is it ϵ -far from uniform in the L_1 metric?

- "fatten" a discrete distribution on M random points,
- up to $\sim \sqrt{M}$ draws this looks like a random distribution,
- but is very L_1 -far from uniform.

A testable property - discreteness on M points

For arbitrary Ω distinguish between

$$f = \sum_{i=1}^{M} p_i \delta_{x_i}$$

for some x_1, \ldots, x_M ,

۲

۲

 $\Pr[A] < 1 - \epsilon$

for any set $A \subset \Omega$ of size M.

A testable property - discreteness on M points

Tester for discreteness on M points:

- Take $2M/\epsilon$ random samples
- If there are $\leq M$ distinct values accept.
- If there are > M distinct values reject.

A testable property - discreteness on M points

Tester for discreteness on *M* points:

- Take $2M/\epsilon$ random samples
- If there are $\leq M$ distinct values accept.
- If there are > M distinct values reject.

Lower bound $\Omega(M^{1-o(1)})$ follows from bounds for estimating distribution support size (eg. Raskhodnikova et al'09, Valiant'08). Match these bounds?

Monotone distributions and uniformity

Find a class of distributions for which being uniform is testable.

Monotone distributions and uniformity

Find a class of distributions for which being uniform is testable.

- $\Omega = [0, 1]^n$
- The density f is monotone if f(x) ≤ f(y) whenever x_i ≤ y_i for all i.

Monotone distributions and uniformity

Find a class of distributions for which being uniform is testable.

- $\Omega = [0, 1]^n$
- The density f is monotone if f(x) ≤ f(y) whenever x_i ≤ y_i for all i.

Given a distribution with monotone density f,

- Is f the uniform distribution \mathcal{U} ?
- Or is it ϵ -far from $\mathcal U$ in the L_1 metric

$$d(f,g) = rac{1}{2}\int_{\Omega}|f-g|.$$

Discrete vs. continuous cubes

Rubinfeld, Servedio'05

Testing uniformity of monotone distributions on the boolean cube $\{0,1\}^n$ with L_1 distance

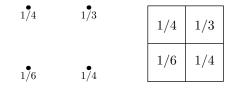
- Is possible with $O(n\log(n/\epsilon)/\epsilon^2)$ samples.
- Requires $\Omega(n/\log^2 n)$ samples.

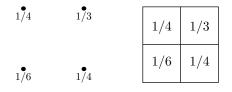
Discrete vs. continuous cubes

Rubinfeld, Servedio'05

Testing uniformity of monotone distributions on the boolean cube $\{0,1\}^n$ with L_1 distance

- Is possible with $O(n\log(n/\epsilon)/\epsilon^2)$ samples.
- Requires $\Omega(n/\log^2 n)$ samples.





lower bound	\rightarrow	lower bound
upper bound	\leftarrow	upper bound

Discrete vs. continuous cubes

Rubinfeld, Servedio'05

Testing uniformity of monotone distributions on the boolean cube $\{0,1\}^n$ with L_1 distance

- Is possible with $O(n\log(n/\epsilon)/\epsilon^2)$ samples.
- Requires $\Omega(n/\log^2 n)$ samples.

Discrete vs. continuous cubes

Rubinfeld, Servedio'05

Testing uniformity of monotone distributions on the boolean cube $\{0,1\}^n$ with L_1 distance

- Is possible with $O(n\log(n/\epsilon)/\epsilon^2)$ samples.
- Requires $\Omega(n/\log^2 n)$ samples.

Our result

Testing uniformity of monotone distributions on the real cube $[0, 1]^n$ with L_1 distance

• Is possible with $O(n/\epsilon^2)$ samples.

Tester

Idea: estimate $||x||_1 = x_1 + x_2 + \ldots + x_n$.

Tester

Idea: estimate
$$||x||_1 = x_1 + x_2 + ... + x_n$$
.

 $\bullet~$ If ${\cal U}$ is the uniform distribution then

$$\mathsf{E}_{\mathcal{U}}[\|x\|_1] = \frac{n}{2}$$

Tester

Idea: estimate
$$||x||_1 = x_1 + x_2 + \ldots + x_n$$
.

 $\bullet~$ If ${\cal U}$ is the uniform distribution then

$$\mathsf{E}_{\mathcal{U}}[\|x\|_1] = \frac{n}{2}.$$

Theorem

If f is a monotone distribution, ϵ -far from uniform then

$$\mathsf{E}_f[\|x\|_1] \geq \frac{n}{2} + \frac{\epsilon}{2}.$$

Tester

- $\Omega = [0,1]^n$, f unknown monotone distribution.
 - Draw C samples x_1, \ldots, x_C ,

$$\tilde{E}=\frac{1}{C}\sum \|x_i\|_1.$$

- If $\tilde{E} > \frac{n}{2} + \frac{\epsilon}{4}$ say ϵ far from uniform.
- If $\tilde{E} \leq \frac{n}{2} + \frac{\epsilon}{4}$ say uniform.
- $C = 40n/\epsilon^2$ is good (use Feige's inequality).

A word on the proof

$$\mathsf{E}_f[\|x\|_1] \geq \frac{n}{2} + \frac{\epsilon}{2}.$$

A word on the proof

or

$$\begin{aligned} \mathbf{E}_{f}[\|x\|_{1}] \geq \frac{n}{2} + \frac{\epsilon}{2}. \\ \int_{\Omega} \|x\|_{1}g(x) \mathrm{d}x \geq \frac{1}{4} \int_{\Omega} |g(x)| \mathrm{d}x \end{aligned}$$
for $\int_{\Omega} g(x) \mathrm{d}x = 0, \ g : [0, 1]^{n} \to \mathbf{R}$ - monotone.

A word on the proof

$$\mathbf{E}_{f}[\|x\|_{1}] \geq \frac{n}{2} + \frac{\epsilon}{2}.$$

or
$$\int_{\Omega} \|x\|_{1}g(x)dx \geq \frac{1}{4}\int_{\Omega} |g(x)|dx$$

for
$$\int_{\Omega} g(x)dx = 0, g : [0,1]^{n} \to \mathbf{R} \text{ - monotone.}$$

$$\bullet$$
$$\int_{0}^{1} t \cdot g(t)dt = \frac{1}{4}\int_{t,s} |g(t) - g(s)|dsdt - \frac{1}{2}\int_{0}^{1} g(t)dt$$

A word on the proof

$$\mathbf{E}_{f}[\|x\|_{1}] \geq \frac{n}{2} + \frac{\epsilon}{2}.$$

or
$$\int_{\Omega} \|x\|_{1}g(x)dx \geq \frac{1}{4}\int_{\Omega} |g(x)|dx$$

for
$$\int_{\Omega} g(x)dx = 0, g : [0,1]^{n} \to \mathbf{R} - \text{monotone.}$$

$$\bullet$$
$$\int_{0}^{1} t \cdot g(t)dt = \frac{1}{4}\int_{t,s} |g(t) - g(s)|dsdt - \frac{1}{2}\int_{0}^{1} g(t)dt$$

• If g is a function defined on the vertices of a boolean cube

$$\sum_{diagonals} |g(u) - g(v)| \leq \sum_{edges} |g(u) - g(v)|.$$

Conclusions

• We can test if a monotone distribution on $[0,1]^n$ is uniform.

Conclusions

We can test if a monotone distribution on [0, 1]ⁿ is uniform.
 Same for monotone distributions on {0, 1, ..., k}ⁿ.

Conclusions

- We can test if a monotone distribution on [0, 1]ⁿ is uniform.
 Same for monotone distributions on {0, 1, ..., k}ⁿ.
- Other testable classes of distributions?

Conclusions

- We can test if a monotone distribution on [0, 1]ⁿ is uniform.
 Same for monotone distributions on {0, 1, ..., k}ⁿ.
- Other testable classes of distributions?
- Other closeness measures instead of *L*₁? Earth-mover distance? (Ba, Nguyen, Nguyen, Rubinfeld '09)